Chapter
Apr 26, 2012

Cylindrical Cavity Expansion from a Finite Radius

Publication: Deep Foundations and Geotechnical In Situ Testing

Abstract

Solutions of cavity expansion have many practical applications in geotechnical engineering. In the large body of literature on the cavity expansion models for cohesive frictional materials, the solutions have mostly been derived by adopting a finite logarithmic strain definition in the plastic zone. A more rigorous alternative approach using the rate formulation for cylindrical cavity expansion from a finite radius is presented in this paper. The material is assumed to behave as elasto-perfectly plastic, obeying a Mohr-Coulomb yield criterion and the associated or nonassociated flow rule. The "time" (or evolution) variable is chosen to be the current cavity radius. The solution for the onset of plasticity serve as both the continuity condition for the elastoplastic interface and the initial condition for cavity expansion. The pressure-expansion relationship obtained is a first order ordinary differential equation and converges to a self-similar solution for expansion at a large radius.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Deep Foundations and Geotechnical In Situ Testing
Deep Foundations and Geotechnical In Situ Testing
Pages: 375 - 383

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Haiying Huang [email protected]
Assistant Professor, Georgia Institute of Technology, Atlanta, GA.E-mail: [email protected]
Emmanuel Detournay [email protected]
Professor, University of Minnesota, Minneapolis, MN.E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share