Chapter
Apr 26, 2012

Modeling of Prestressed Concrete Bridge Girders

Publication: Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments

Abstract

Reinforced and prestressed concrete (RC and PC) bridge girders are crucial to the safety and serviceability of structures subjected to shear. The past three decades have seen a rapid development of knowledge in shear of reinforced concrete structures. Various rational models have been proposed that are based on the smeared-crack concept and can satisfy Navier's three principles of mechanics of materials (i.e., stress equilibrium, strain compatibility and constitutive laws). The Cyclic Softened Membrane Model (CSMM) is one such rational model developed at the University of Houston, which is being efficiently used to predict the behavior of RC/PC structures critical in shear. CSMM for RC has already been implemented into finite element framework of OpenSees to come up with a finite element program called Simulation of Reinforced Concrete Structures (SRCS). CSMM for PC was recently implemented into SRCS to make the program applicable to reinforced as well as prestressed concrete. The generalized program is called Simulation of Concrete Structures (SCS). To create SCS, the constitutive relationships of the materials, including uniaxial constitutive relationship of concrete, uniaxial constitutive relationships of reinforcements embedded in concrete and constitutive relationship of concrete in shear, were determined by testing RC/PC full-scale panels in a Universal Panel Tester available at the University of Houston. The formulation in element scale was then derived, including equilibrium and compatibility equations, relationship between biaxial strains and uniaxial strains, material stiffness matrix and RC plane stress element. Finally, the formulated results with RC/PC plane stress elements were implemented in structure scale into a finite element program based on the framework of OpenSees to predict the structural behavior of RC/PC thin-walled structures subjected to earthquake-type loading. The accuracy of the multiscale modeling technique was validated by comparing the simulated responses of full-scale PC bridge girders subjected to vertical loads. This multiscale modeling technique greatly improves the simulation capability of RC and PC beam structures available to researchers and engineers.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Earth and Space 2010
Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments
Pages: 2870 - 2887

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

Authors

Affiliations

WorleyParsons Group Inc., 575 N. Dairy Ashford, Houston, TX 77079, USA .E-mail: [email protected]
Thomas T.C. Hsu Laboratory, Department of Civil and Environmental Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77004, USA.E-mail: [email protected]
Thomas T.C. Hsu Laboratory, Department of Civil and Environmental Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77004, USA.E-mail: [email protected]
T. T. C. Hsu [email protected]
Thomas T.C. Hsu Laboratory, Department of Civil and Environmental Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77004, USA.E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share