Chapter
Apr 26, 2012

Design of Dual Water Supply Systems

Publication: World Environmental and Water Resources Congress 2009: Great Rivers

Abstract

Water scarcity is causing major concerns throughout the world, especially in arid regions where cities are growing rapidly and are depleting groundwater reserves faster than they can be recharged. The southwestern U.S., Arizona and Nevada in particular, are experiencing the large growth rates with limited water resources and no new sources available. In effort to reduce the amount of water being consumed by people, new engineering technologies are being explored. Water reuse is becoming recognized as the last untapped water resource. However, little research has been conducted on effectively distributing that water to user. In particular, distribution of reclaimed water through a parallel pipe networks system to homes or dual water supply system has not been considered. Existing distribution systems deliver water via a single system. Meeting flow and pressure requirements for fire conditions are driving factors in designing water distribution systems. Minimum regulatory pipe diameters of six to eight inches are common in most systems and can lead to reduced water quality. The goal of a parallel system is to maximize the usage of reclaimed water. By distributing non-potable water through a separate line to meet non-sanitary uses (i.e., outdoor, fireflow, and toilet flushing), the need for potable water can be greatly reduced. Separating these demands from the potable system can reduce the potable system pipe sizes, improve water quality and reduce the overall cost of the water distribution system. Some cities in the southwestern U.S. have already implemented this new system in some residential areas through a non-potable "purple pipe" system. However, the efficiency of these new systems has not been thoroughly examined. This paper will focuses on the design of dual systems by using an optimization algorithm linked to EPANET (USEPA, 2000) via the EPANET toolkit to determine the optimal least-cost design of dual piping systems.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2009
World Environmental and Water Resources Congress 2009: Great Rivers
Pages: 1 - 8

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Graduate Research Assistant, Department of Civil Engineering and Engineering Mechanics, The University of Arizona, Tucson, AZ 85721. E-mail: [email protected]
Research Associate, Department of Civil Engineering and Engineering Mechanics, The University of Arizona, Tucson, AZ 85721. E-mail: [email protected]
Professor, Department of Civil Engineering and Engineering Mechanics, The University of Arizona, Tucson, AZ 85721. E-mail: [email protected]
Professor, Department of Agricultural and Biosystems Engineering, The University of Arizona, Tucson, AZ 85721. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share