Chapter
Apr 26, 2012

Application of Radio Frequency Tracers to Individual and Group Particle Displacement within a Laboratory

Publication: World Environmental and Water Resources Congress 2009: Great Rivers

Abstract

Multiple approaches (shear stress, discharge, stream power, etc.) have been developed for describing the rate of bedload movement, each with a means of being calculated in the field. One current approach relies on the mean virtual velocity of individual sediment particles. Virtual velocity is determined by dividing the displacement length of a particle by the sum of the rest and displacement times. The focus of this research is the application of a Radio Frequency Identification (RFID) system as a means to monitor individual and group particle displacement and rest times necessary for calculating the virtual velocity, so that the bedload transport rate can be predicted. An RFID system consists of programmed transponders and a corresponding reader that communicate using radio waves. This communication provides the ability to track individual particles with embedded transponders. By setting customized antennas in the flume to act as gateways, communication between the antennas and particles traveling over a known distance provides the time between antennas, allowing for the calculation of the 1-D virtual velocity. To develop this system, multiple obstacles needed to be overcome. Past RFID research has shown that transponder orientation and transponder signal collision can present large problems to the application of RFID technology to sediment transport research. These two problems have been accounted for by: 1) using particles consisting of two transponders oriented perpendicularly to each other, and by 2) using transponders that have anti-collision signal capabilities. The use of anti-collision capable transponders also provides the capability of tracking the flux of a group of particles. Tracking a group of particles allows for correction due to the flow field and the possibility of hiding. Cameras and image analysis tools will be used for confirmation of results.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2009
World Environmental and Water Resources Congress 2009: Great Rivers
Pages: 1 - 8

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Graduate Research Assistant, IIHR-Hydroscience and Engineering, Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242,. E-mail: [email protected].
A. N. Papanicolaou [email protected].
Associate Professor, Robert and Virginia Faculty Fellow in Engineering, IIHR-Hydroscience and Engineering, Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242,. E-mail: [email protected].

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share