Chapter
Apr 26, 2012

Augmented Gradient Method for Head Dependent Modelling of Water Distribution Networks

Publication: World Environmental and Water Resources Congress 2009: Great Rivers

Abstract

When analysing a pressure deficient network, it is crucial that the pressure dependent nature of nodal outflows be taken into account. The head dependent analysis (HDA) produces an accurate representation of the nodal outflows and network hydraulic performance. This is essential when modelling pipe leakages, network redundancy and reliability. These are vital aspects often considered in the optimization of a water distribution system (WDS). This paper describes an approach for head dependent analysis in which an embedded function for the head-outflow relationship is incorporated in the Gradient Method (GM). The procedure is capable of simulating both normal and deficient network operating conditions effectively. Results based on networks from the literature show that the proposed method is robust and converges smoothly and rapidly.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2009
World Environmental and Water Resources Congress 2009: Great Rivers
Pages: 1 - 10

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Calvin Siew [email protected]
Department of Civil Engineering, University of Strathclyde, Glasgow G4 0NG, UK. E-mail: [email protected]
Tiku T. Tanyimboh [email protected]
Department of Civil Engineering, University of Strathclyde, Glasgow G4 0NG, UK. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share