Chapter
Apr 26, 2012

Estimating Groundwater Seepages to St. Lucie Estuary

Publication: World Environmental and Water Resources Congress 2009: Great Rivers

Abstract

In this paper, four analytical models describing hydraulic interaction of stream-aquifer systems were applied to St Lucie Estuary (SLE) River Estuaries. These are analytical solutions for: (1) flow from a finite aquifer to a canal, (2) flow from an infinite aquifer to a canal, (3) the linearized Laplace system in a seepage surface, and (4) potential flow through stratified unconfined aquifers. Input data for analytical solutions were obtained from monitoring wells and river stages at seepage-meter sites. Four transects in the study area are available: Club Med, Harbour Ridge, Lutz/MacMillan, and Pendarvis Cove located in the St. Lucie River. The analytical models were first calibrated with seepage meter measurements and then used to estimate of groundwater discharges into St. Lucie River. From this process, analytical relationships between the seepage rate and river stages and/or groundwater tables were established to predict the seasonal and monthly variation in groundwater seepage into SLE. It was found the seepage rate estimations by analytical models agreed well with measured data for some cases but only fair for some other cases. This is not unexpected because analytical solutions have some inherently simplified assumptions, which may be more valid for some cases than the others. From analytical calculations, it is possible to predict approximate seepage rates in the study domain when the assumptions underlying these analytical models are valid. The finite and infinite aquifer models and the linearized Laplace method are good for sites Pendarvis Cove and Lutz/MacMillian, but fair for the other two sites. The stratified unconfined aquifer model gave similarly good agreements with measurements at three sites but poorly at the Club Med site. None of the analytical models presented here can fit the data at this site. To give better estimates at all sites numerical modeling that couple river hydraulics and groundwater flow involving less simplifications of and assumptions for the system may have to be adapted.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2009
World Environmental and Water Resources Congress 2009: Great Rivers
Pages: 1 - 19

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Gour-Tsyh Yeh [email protected]
Dept. Of Civil and Environ. Eng., University of Central Florida, Orlando, FL 32816. E-mail: [email protected]
Jae-Young Lee [email protected]
Dept. Of Civil and Environ. Eng., University of Central Florida, Orlando, FL 32816. E-mail: [email protected]
South Florida Water Management District, West Palm Beach, FL 3340. E-mail: [email protected]
South Florida Water Management District, West Palm Beach, FL 3340. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share