Chapter
Apr 26, 2012

Real-Time Demand Estimation and Confidence Limit Analysis for Water Distribution Systems

Publication: Water Distribution Systems Analysis 2008

Abstract

Average demands are estimated based on population densities, typical usage by consumers, customer billing records, and other factors but are not appropriate for real-time modeling. Good nodal demand estimates to analyze and respond to pressure and water quality events are critical, however, approaches to estimate them are lacking. This paper presents a real-time demand estimation method using a recursive state estimator that is based on a weighted least squares (WLS) scheme. It is shown that pipe flow field measurements contain the most information for estimating nodal demands. Since the number of measurements will typically be less than the number of nodes in the system, regions with similar user characteristics are grouped and assumed to have same demand patterns. The demand estimation uncertainties propagated from field measurement errors and model simplification errors are quantified in terms of confidence limits using first order second moment (FOSM) method and the results are verified by Monte Carlo simulation. Application to a simple network with synthetically generated demands shows promising results.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Water Distribution Systems Analysis 2008
Water Distribution Systems Analysis 2008
Pages: 1 - 9

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Department of Civil Engineering and Engineering Mechanics, The University of Arizona, Tucson, AZ 85721. E-mail: [email protected]
Department of Civil Engineering and Engineering Mechanics, The University of Arizona, Tucson, AZ 85721. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share