Abstract

Mixed sediment beaches are morphologically distinct from and more complex than either sand or gravel only beaches. Three digital imaging techniques are employed to quantify surficial grain size and bedload sediment transport rates along the mixed sediment beaches of Kachemak Bay, Alaska. Applying digital imaging procedures originally developed for quickly and efficiently quantifying grain sizes of sand to coarse sediment classes gives promising results. Hundreds of grain size estimates lead to a quantitative characterization of the region's sediment at a significant reduction in cost and time as compared to traditional techniques. Both the sand and coarse fractions on this megatidal beach mobilize into self-organized bedforms that migrate alongshore with a seasonally reflecting the temporal pattern of the alongshore component of wave power. In contrast, the gravel bedforms also migrate in the cross-shore without significant seasonally suggesting that swash asymmetry is sufficient to mobilize the gravel even during low energy summer conditions.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Coastal Sediments '07
Coastal Sediments '07
Pages: 463 - 476

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

Authors

Affiliations

Peter Ruggiero [email protected]
Department of Geosciences, Oregon State University, 104 Wilkinson Hall, Corvallis, OR, 97331. E-mail: [email protected]
Peter N. Adams [email protected]
Department of Geological Sciences, University of Florida, 241 Williamson Hall, P.O. Box 112120 Gainesville, FL, 32611. E-mail: [email protected]
Jonathan A. Warrick [email protected]
Coastal and Marine Geology Program, USGS Pacific Science Center, 400 Natural Bridges Drive, Santa Cruz, CA 95060. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share