Chapter
Apr 26, 2012

Numerical Prediction of Vadose Zone Behaviour Influenced by Vegetation

Publication: Unsaturated Soils 2006

Abstract

Bioengineering aspects of native vegetation are currently, and rapidly, being evolved to improve soil stiffness, slope stabilisation, and erosion control. Apart from the reinforcement effect, tree roots establish sufficient matric suction to increase the shear strength and stiffness of the soil. This paper looks at the way, vegetation influences soil matric suction, shrinkage, and ground settlement. A mathematical model for the rate of root water uptake that considers ground conditions, type of vegetation and climatic parameters, has been developed. Based on this proposed model, the distribution of moisture and the matric suction profile adjacent to the tree are numerically analysed. The model formulation is based on the general effective stress theory of unsaturated soils. Field measurements taken from literature published previously are compared with the authors' numerical model. The predicted results calculated using the soil, plant, and atmospheric parameters contained in the numerical model, compared favourably with the measured results, justifying the assumptions upon which the model was developed.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Unsaturated Soils 2006
Unsaturated Soils 2006
Pages: 2256 - 2267

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

B. Indraratna [email protected]
Professor of Civil Engineering, University of Wollongong, NSW 2522, Australia. E-mail: [email protected]
Ph.D. Candidate, Civil Engineering, University of Wollongong, NSW 2522, Australia. E-mail: [email protected]
Research Fellow, Civil Engineering, University of Wollongong, NSW 2522, Australia. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share