Chapter
Apr 26, 2012

An Elasto-Viscoplastic Model and Multiphase Coupled FE Analysis for Unsaturated Soil

Publication: Unsaturated Soils 2006

Abstract

Rate sensitivity is an important characteristic of geomaterials for both saturated and unsaturated soils. However, many constitutive models for unsaturated soil have been constructed within the framework of the rate independent theory. The present study addresses an elasto-viscoplastic constitutive model which considers the effect of suction for unsaturated clayey soil and a soil-water-air three-phase coupled analysis using the elasto-viscoplastic model. The proposed constitutive model adopts the average skeleton stress for the effective stress from the viewpoint of the mixture theory. Hence, it has become possible to construct a model for unsaturated soil starting with a model for saturated soil by substituting the average skeleton stress for the effective stress and introducing the suction effect into the constitutive model. Furthermore, the collapse behavior, which is brought about by a decrease in suction, is described by the shrinkage of the overconsolidation boundary surface, the static yield surface, and the viscoplastic potential surface. A numerical analysis for multiphase materials is conducted within the framework of a continuum mechanics approach through the use of the theory of porous media. The theory is a generalization of Biot's two-phase mixture theory for saturated soil. A soil-water-air three-phase coupled finite element method is developed in the present study using the governing equations for multiphase soil based on the non-linear finite deformation theory. The average skeleton stress is defined as the difference between the total stress and the average pressure of the two fluids and is used in the proposed elasto-viscoplastic constitutive model. A van Genuchten (1980) type of equation is employed as the constitutive equation between the liquid saturation and the suction pressure. Numerical simulations of unexhausted-undrained compression with different strain rates are conducted under plane strain conditions, and the applicability of the proposed method is evaluated with respect to strain localization and the effect of suction.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to Unsaturated Soils 2006
Unsaturated Soils 2006
Pages: 2039 - 2050

History

Published online: Apr 26, 2012

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Department of Civil and Earth Resources Engineering, Kyoto University, Japan, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501,. E-mail: [email protected]
T. Kodaka
Department of Civil and Earth Resources Engineering, Kyoto University, Japan, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501
S. Kimoto
Department of Civil and Earth Resources Engineering, Kyoto University, Japan, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501
Geotechnical Engineering Research Department, Korea Institute of Construction Technology, Korea, 2311, Daehwa-dong, Ilsan-gu, Koyang-shi, Kyonggi-do 411-712,. E-mail: [email protected] (former student of Kyoto University)
N. Yamasaki
Okumura Corporation (former student of Kyoto University)

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share