State-of-the-Art Reviews
Apr 6, 2022

Recent Advances in Hybrid Vibration-Control Systems

Publication: Practice Periodical on Structural Design and Construction
Volume 27, Issue 3

Abstract

A detailed literature review of the recent advances in hybrid vibration-control systems was presented in this article. In the literature, a combination of two or more vibration-control mechanisms, such as passive, active, and semiactive schemes, are defined as a hybrid vibration-control system. This review focused on seismic and wind response mitigation of structures using hybrid vibration-control devices. It started with the historical background of vibration-control systems and categorized hybrid control schemes within a proper frame of references. A detailed literature review on theoretical studies, experimental investigations, and real-life applications of hybrid vibration-control systems was presented. Specifically, this review presented the development in hybrid vibration-control schemes such as passive-passive, semiactive-passive, and active-passive systems. Active-passive damping devices combine the reliability, robustness, and low cost of viscoelastic damping with high-performance, model-selective, and adaptive piezoelectric active control. The semiactive-passive system is a combined system of semiactive damping devices and passive dampers. The passive-passive system consists of two or more passive damping devices. The review shed light on the pros and cons of each of hybrid vibration-control systems and provided the scope of future research for more robust vibration control, which involves dealing with limitations such as weight, size, cost, maintenance, and design obstacles of hybrid vibration-control systems.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Abe, M. 1996. “Semi-active tuned mass dampers for seismic protection of civil structures.” Earthquake Eng. Struct. Dyn. 25 (7): 743–749. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7%3C743::AID-EQE579%3E3.0.CO;2-S.
Abe, M., and Y. Fujino. 1993. “Efficiency and design formulas of multiple tuned mass dampers (MTMDs).” J. Jpn. Soc. Civ. Eng. 465: 97–106.
Abe, M., and Y. Fujino. 1994. “Dynamic characterization of multiple tuned mass dampers and some design formulas.” Earthquake Eng. Struct. Dyn. 23 (8): 813–836. https://doi.org/10.1002/eqe.4290230802.
Abe, M., and T. Igusa. 1995. “Semi-active tuned mass dampers with nonlinear control.” In Proc., 10th Conf. on Engineering Mechanics, part 1 (of 2), 750–753. Reston, VA: ASCE.
Abe, M., and T. Igusa. 1996. “Semi-active dynamic vibration absorbers for controlling transient response.” J. Sound Vib. 198 (5): 547–569. https://doi.org/10.1006/jsvi.1996.0588.
Adam, C., A. Di Matteo, T. Furtmüller, and A. Pirrotta. 2017. “Earthquake excited base-isolated structures protected by tuned liquid column dampers: Design approach and experimental verification.” Procedia Eng. 199 (Jan): 1574–1579. https://doi.org/10.1016/j.proeng.2017.09.060.
Adeli, H., and H. S. Park. 1995. “Counter propagation neural network in structural engineering.” J. Struct. Eng. 121 (8): 1205–1212. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:8(1205).
Afefy, H. M. 2020. “Seismic retrofitting of reinforced-concrete coupled shear walls: A review.” Pract. Period. Struct. Des. Constr. 25 (3): 03120001. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000489.
Agnes, G. S., and K. Napolitano. 1993. “Active constrained layer viscoelastic damping.” In Proc., 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., 3499–3506. Reston, VA: ASCE.
Agrawal, A. K., and J. N. Yang. 1999. “Design of passive energy dissipation systems based on LQR control methods.” J. Intell. Mater. Syst. Struct. 10 (12): 933–944. https://doi.org/10.1106/FB58-N1DG-ECJT-B8H4.
Agrawal, A. K., and J. N. Yang. 2000. “A semi-active hybrid isolation system for buildings subjected to near-field earthquakes.” In Proc., 14th Conf. on Analysis and Computation Held in Conjunction with ASCE Structures Congress 2000. Reston, VA: ASCE.
Ahlawat, A. S., and A. Ramaswamy. 2001. “Multiobjective optimal structural vibration control using fuzzy logic control system.” J. Struct. Eng. 127 (11): 1330–1337. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:11(1330).
Ahlawat, A. S., and A. Ramaswamy. 2002. “Multiobjective optimal FLC driven hybrid mass damper system for torsionally coupled, seismically excited structures.” Earthquake Eng. Struct. Dyn. 31 (12): 2121–2139. https://doi.org/10.1002/eqe.209.
Ahmadlou, M., and H. Adeli. 2010. “Enhanced probabilistic neural network with local decision circles: A robust classifier.” Integr. Comput.-Aided Eng. 17 (3): 197–210. https://doi.org/10.3233/ICA-2010-0345.
Akbay, Z., and H. Aktan. 1991. “Actively regulated friction slip devices.” In Proc., 6th Canadian Conf. on Earthquake Engineering, 367–374. Montreal: Canadian Society for Civil Engineering.
Akbay, Z., and H. M. Aktan. 1990. “Intelligent energy dissipation devices.” In Vol. 3 of Proc., 4th US National Conf. on Earthquake Engineering, 427–435. El Cerrito, CA: Earthquake Engineering Research Institute.
Alavinasab, A., H. Moharrami, and A. Khajepour. 2006. “Active control of structures using energy-based LQR method.” Comput.-Aided Civ. Infrastruct. Eng. 21 (8): 605–611. https://doi.org/10.1111/j.1467-8667.2006.00460.x.
Aldemir, U. 2003. “Optimal control of structures with semi-active-tuned mass dampers.” J. Sound Vib. 266 (4): 847–874. https://doi.org/10.1016/S0022-460X(03)00191-3.
Ali, H. M., and A. M. Abdel-Ghaffar. 1995. “Seismic passive control of cable-stayed bridges.” Shock Vib. 2 (4): 259–272. https://doi.org/10.1155/1995/918721.
Amini, F., N. K. Hazaveh, and A. A. Rad. 2013. “Wavelet PSO-based LQR algorithm for optimal structural control using active tuned mass dampers.” Comput.-Aided Civ. Infrastruct. Eng. 28 (7): 542–557. https://doi.org/10.1111/mice.12017.
Araújo, A. L., C. M. M. Soares, and C. A. M. Soares. 2010. “A viscoelastic sandwich finite element model for the analysis of passive, active and hybrid structures.” Appl. Compos. Mater. 17 (5): 529–542. https://doi.org/10.1007/s10443-010-9141-3.
Ayorinde, E. O., and G. B. Warburton. 1980. “Minimizing structural vibrations with absorbers.” Earthquake Eng. Struct. Dyn. 8 (3): 219–236. https://doi.org/10.1002/eqe.4290080303.
Badre-Alam, A., K. W. Wang, and F. Gandhi. 1999. “Optimization of enhanced active constrained layer (EACL) treatment on helicopter flexbeams for aeromechanical stability augmentation.” Smart Mater. Struct. 8 (2): 182–196. https://doi.org/10.1088/0964-1726/8/2/003.
Balandin, D. V., and M. M. Kogan. 2005. “LMI-based optimal attenuation of multi-story building oscillations under seismic excitations.” Struct. Control Health Monit. 12 (2): 213–224. https://doi.org/10.1002/stc.60.
Bandivadekar, T. P., and R. S. Jangid. 2012. “Mass distribution of multiple tuned mass dampers for vibration control of structures.” Int. J. Civ. Struct. Eng. 3 (1): 70–84.
Bandivadekar, T. P., and R. S. Jangid. 2013. “Optimization of multiple tuned mass dampers for vibration control of system under external excitation.” J. Vib. Control 19 (12): 1854–1871. https://doi.org/10.1177/1077546312449849.
Bani-Hani, K. A., and M. A. Sheban. 2006. “Semi-active neuro-control for base-isolation system using magnetorheological (MR) dampers.” Earthquake Eng. Struct. Dyn. 35 (9): 1119–1144. https://doi.org/10.1002/eqe.574.
Barbat, A. H., and L. M. Bozzo. 1997. “Seismic analysis of base isolated buildings.” Arch. Comput. Methods Eng. 4 (2): 153–192. https://doi.org/10.1007/BF03020128.
Barroso, L. R., J. G. Chase, and S. Hunt. 2003. “Resettable smart dampers for multi-level seismic hazard mitigation of steel moment frames.” J. Struct. Control 10 (1): 41–58. https://doi.org/10.1002/stc.16.
Basu, B., and S. Nagarajaiah. 2008. “A wavelet-based time-varying adaptive LQR algorithm for structural control.” Eng. Struct. 30 (9): 2470–2477. https://doi.org/10.1016/j.engstruct.2008.01.011.
Bathaei, A., S. M. Zahrai, and M. Ramezani. 2017. “Semi-active seismic control of an 11-DOF building model with TMD+MR damper using type-1 and -2 fuzzy algorithms.” J. Vib. Control 24 (13): 2938–2953. https://doi.org/10.1177/1077546317696369.
Baz, A. 1997. “Optimization of energy dissipation characteristics of active constrained layer damping.” Smart Mater. Struct. 6 (3): 360–368. https://doi.org/10.1088/0964-1726/6/3/014.
Baz, A. 1998. “Robust control of active constrained layer damping.” J. Sound Vib. 211 (3): 467–480. https://doi.org/10.1006/jsvi.1997.1315.
Baz, A., and J. Ro. 1993. “Partial treatment of flexible beams with active constrained layer damping.” In Recent developments in stability. Vibration and control of structural systems, edited by A. Guran, 61–80. New York: ASME.
Baz, A., and J. Ro. 1995. “Optimum design and control of active constrained layer damping.” J. Vib. Acoust. 117 (B): 135–144. https://doi.org/10.1115/1.2838655.
Beenamol, M., S. Prabavathy, and E. Mohanalin. 2012. “Wavelet based seismic signal de-noising using Shannon and Tsallis entropy.” Comput. Math. Appl. 64 (11): 3580–3593. https://doi.org/10.1016/j.camwa.2012.09.009.
Benjeddou, A. 2001. “Advances in hybrid active-passive vibration and noise control via piezoelectric and viscoelastic constrained layer treatments.” J. Vib. Control 7 (4): 565–602. https://doi.org/10.1177/107754630100700406.
Bergman, L. A., D. M. McFarland, J. K. Hall, E. A. Johnson, and A. Kareem. 1989. “Optimal distribution of tuned mass dampers in wind sensitive structures.” In Proc., ICOSSAR’89, 5th Int. Conf. on Structural Safety and Reliability, 95–102. Reston, VA: ASCE.
Bhowmik, K., and P. Saha. 2017. “Seismic response control of benchmark highway bridge using passive hybrid control systems.” Int. J. Mater. Struct. Integrity 11 (4): 155–174. https://doi.org/10.1504/IJMSI.2017.089655.
Bitaraf, M., L. R. Barroso, and S. Hurlebaus. 2010a. “Adaptive control to mitigate damage impact on structural response.” J. Intell. Mater. Syst. Struct. 21 (6): 607–619. https://doi.org/10.1177/1045389X10361993.
Bitaraf, M., S. Hurlebaus, and L. R. Barroso. 2012. “Active and semi-active adaptive control for undamaged and damaged building structure under seismic load.” Comput.-Aided Civ. Infrastruct. Eng. 27 (1): 48–64. https://doi.org/10.1111/j.1467-8667.2011.00719.x.
Bitaraf, M., O. Ozbulut, and S. Hurlebaus. 2010b. “Application of semi-active control strategies for seismic protection of building with MR dampers.” Eng. Struct. 32 (10): 3040–3047. https://doi.org/10.1016/j.engstruct.2010.05.023.
Bobrow, J. E., F. Jabbari, and K. A. Thai. 2000. “New approach to shock isolation and vibration suppression using a resetable actuator.” J. Dyn. Syst. Meas. Contr. 122 (3): 570–573. https://doi.org/10.1115/1.1286629.
Bobrow, J. E., and F. A. Jabbari. 1997. “High-performance semiactive controller for structural vibration suppression.” Vol. of 3041 in Proc., Smart Structures and Materials 1997: Smart Structures and Integrated Systems, 67–74. Bellingham, WA: International Society for Optics and Photonics.
Buckle, I. G. 2000. “Passive control of structures for seismic loads.” In Proc., 12th World Conf. on Earthquake Engineering, 2825–2838. Upper Hutt, New Zealand: New Zealand Society for Earthquake Engineering.
Buckle, I. G., and R. L. Mayes. 1990. “Seismic isolation: History, application and performance—A world view.” Earthquake Spectra 6 (2): 161–201. https://doi.org/10.1193/1.1585564.
Buckley, J., and Y. Hayashi. 1994. “Fuzzy genetic algorithm and applications.” Fuzzy Sets Syst. 61 (2): 129–136. https://doi.org/10.1016/0165-0114(94)90228-3.
Buravalla, V. R., and B. Bhattacharya. 2007. “A new hybrid vibration control methodology using a combination of magnetostrictive and hard damping alloys.” Smart Struct. Syst. 3 (4): 405–422. https://doi.org/10.12989/sss.2007.3.4.405.
Calvi, P. M., M. Moratti, and G. M. Calvi. 2016. “Seismic isolation devices based on sliding between surfaces with variable friction coefficient.” Earthquake Spectra 32 (4): 2291–2315. https://doi.org/10.1193/091515EQS139M.
Carlson, J. D., and B. F. Spencer Jr. 1996a. “Magneto-rheological fluid dampers for semi-active seismic control.” In Vol. 3 of Proc., 3rd Int. Conf. on Motion and Vibration Control, edited by K. Nonami and T. Mizuno, 35–40. New York: ASME.
Carlson, J. D., and B. F. Spencer Jr. 1996b. “Magneto-rheological fluid dampers: Scalability and design issues for application to dynamic hazard mitigation.” In Proc., 2nd Int. Workshop on Structural Control, 99–109. Hong Kong: Hong Kong Univ. of Science and Technology Research Centre.
Carotti, A., and E. Turci. 1999a. “A tuning criterion for the inertial tuned damper, design using phasors in the Argand-Gauss plane.” Appl. Math. Modell. 23 (3): 199–217. https://doi.org/10.1016/S0307-904X(98)10067-7.
Carotti, A., and E. Turci. 1999b. “Use of argand-gauss techniques to design passive inertial dampers for multimodal oscillators: Stability and performance evaluations.” J. Wind Eng. Ind. Aerodyn. 82 (1): 223–245. https://doi.org/10.1016/S0167-6105(99)00035-5.
Casciati, F., ed. 2003. Proceedings of the third world conference on structural control. New York: Wiley.
Cha, Y.-J., and A. K. Agrawal. 2010. “A review of benchmark study on response control of wind-excited tall buildings.” In Proc., 19th Analysis and Computation Specialty Conf. Reston, VA: ASCE. https://doi.org/10.1061/41131(370)24.
Chang, C. 1999. “Mass dampers and their optimal designs for building vibration control.” Eng. Struct. 21 (5): 454–463. https://doi.org/10.1016/S0141-0296(97)00213-7.
Chang, C., S. Shia, and C. Yang. 2017. “Design of buildings with seismic isolation using linear quadratic algorithm.” Procedia Eng. 199 (Jan): 1610–1615. https://doi.org/10.1016/j.proeng.2017.09.069.
Chang, S., N. Makris, A. S. Whittaker, and A. C. T. Thompson. 2002. “Experimental and analytical studies on the performance of hybrid isolation systems.” Earthquake Eng. Struct. Dyn. 31 (2): 421–443. https://doi.org/10.1002/eqe.117.
Chase, J. G., L. R. Barroso, and S. Hunt. 2003. “Quadratic jerk regulation and the seismic control of civil structures.” Earthquake Eng. Struct. Dyn. 32 (13): 2047–2062. https://doi.org/10.1002/eqe.314.
Chase, J. G., L. R. Barroso, and S. Hunt. 2004. “The impact of total acceleration control for semi-active earthquake hazard mitigation.” Eng. Struct. 26 (2): 201–209. https://doi.org/10.1016/j.engstruct.2003.09.008.
Chase, J. G., and H. A. Smith. 1996. “Robust H control considering actuator saturation. I: Theory.” J. Eng. Mech. 122 (10): 976–983. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:10(976).
Chen, G., and J. Wu. 2001. “Optimal placement of multiple tuned mass dampers for seismic structures.” J. Struct. Eng. 127 (9): 1054–1062. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:9(1054).
Chen, H. M., K. H. Tsai, G. Z. Qi, and J. C. S. Yang. 1995. “Neural network for structure control.” J. Comput. Civ. Eng. 9 (2): 168–176. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:2(168).
Chen, H. Y., and J. W. Liang. 2017. “Adaptive wavelet neural network controller for active suppression control of a diaphragm-type pneumatic vibration isolator.” Int. J. Control Autom. Syst. 15 (3): 1456–1465. https://doi.org/10.1007/s12555-014-0428-2.
Chen, T., and A. Baz. 1996. “Performance characteristics of active constrained layer damping versus passive constrained layer damping with active control.” In Vol. 2715 of Smart structures and materials 1996: Mathematics and control in smart structures, edited by V. V. Varadan and J. Chandra, 256–268. Bellingham, WA: SPIE.
Cheng, F. Y., H. Jiang, and K. Lou. 2008. Smart structures: Innovative systems for seismic response control. Boca Raton, FL: CRC Press.
Cheung, Y. L., and W. O. Wong. 2011. “Optimization of a nontraditional dynamic vibration absorber for vibration control of structures under random force excitation.” J. Sound Vib. 330 (6): 1039–1044. https://doi.org/10.1016/j.jsv.2010.10.031.
Chey, M., J. G. Chase, J. B. Mander, and A. J. Carr. 2009. “Semi-active tuned mass damper building systems: Design.” Earthquake Eng. Struct. Dyn. 39 (2): 119–139. https://doi.org/10.1002/eqe.934.
Chey, M., J. G. Chase, J. B. Mander, and A. J. Carr. 2010. “Semi-active tuned mass damper building systems: Application.” Earthquake Eng. Struct. Dyn. 39 (1): 69–89. https://doi.org/10.1002/eqe.933.
Chowdhury, A. H., and M. D. Iwuchukwu. 1987. “The past and future effectiveness of tuned mass dampers.” In Vol. 1 of Proc., 2nd Int. Symp. of Structural Control, 105–127. Berlin: Springer.
Christenson, R. E. 2001. “Semi-active control of civil structures for natural hazard mitigation: Analytical and experimental studies.” Ph.D. thesis, Dept. of Civil Engineering and Geological Sciences, Univ. of Notre Dame.
Christie, M. D., S. Sun, L. Deng, D. H. Ning, H. Du, S. W. Zhang, and W. H. Li. 2019. “A variable resonance magnetorheological-fluid-based pendulum tuned mass damper for seismic vibration suppression.” Mech. Syst. Sig. Process. 116 (Feb): 530–544. https://doi.org/10.1016/j.ymssp.2018.07.007.
Chung, L., Y. Lai, C. W. Yang, K. Lien, and L. Wu. 2013a. “Semi-active tuned mass dampers with phase control.” J. Sound Vib. 332 (15): 3610–3625. https://doi.org/10.1016/j.jsv.2013.02.008.
Chung, L., L. Wu, K. Lien, H. Chen, and H. Huang. 2013b. “Optimal design of friction pendulum tuned mass damper with varying friction coefficient.” Struct. Control Health Monit. 20 (4): 544–559. https://doi.org/10.1002/stc.514.
Clark, A. J. 1988. “Multiple passive tuned mass dampers for reducing earthquake induced building motion.” In Vol. 5 of Proc., 9th World Conf. Earthquake Engineering, 779–784. Tokyo: Japan Association for Earthquake Disaster Prevention.
Colwell, S., and B. Basu. 2009. “Tuned liquid column dampers in offshore wind turbines for structural control.” Eng. Struct. 31 (2): 358–368. https://doi.org/10.1016/j.engstruct.2008.09.001.
Cong, Q., W. Yu, and T. Chai. 2010. “Cascade process modeling with mechanism-based hierarchical neural networks.” Int. J. Neural Syst. 20 (1): 1–11. https://doi.org/10.1142/S012906571000219X.
Constantinou, M. C., T. T. Soong, and G. F. Dargush. 1998. Passive energy dissipation systems for structural design and retrofit. Buffalo, NY: State Univ. of New York.
Constantinou, M. C., M. D. Symans, P. Tsopelas, and D. P. Taylor. 1993. “Fluid viscous dampers in applications of seismic energy dissipation and seismic isolation.” In Proc., ATC 17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control, 581–592. North Tonawanda, NY: Taylor Devices.
Crassidis, J., A. Baz, and N. Wereley. 2000. “H control of active constrained layer damping.” J. Vib. Control 6 (1): 113–136. https://doi.org/10.1177/107754630000600106.
Cu, V. H., B. Han, and D. H. Pham. 2017. “Tuned mass-high damping rubber damper on a taut cable.” KSCE J. Civ. Eng. 21 (3): 928–936. https://doi.org/10.1007/s12205-016-0857-y.
Cu, V. H., and B. A. Han. 2015. “Stay cable with viscous damper and tuned mass damper.” Aust. J. Struct. Eng. 16 (4): 316–323. https://doi.org/10.1080/13287982.2015.1092693.
Datta, T. K. 2003. “A state-of-the-art review on active control of structures.” ISET J. Earthquake Technol. 40 (1): 1–17.
De Angelis, M., A. Giaralis, F. Petrini, and D. Pietrosanti. 2019. “Optimal tuning and assessment of inertial dampers with grounded inerter for vibration control of seismically excited base-isolated systems.” Eng. Struct. 196 (Oct): 109250. https://doi.org/10.1016/j.engstruct.2019.05.091.
Debnath, N., A. Dutta, and S. K. Deb. 2016. “Multi-modal passive-vibration control of bridges under general loading-condition.” Procedia Eng. 144 (Jan): 264–273. https://doi.org/10.1016/j.proeng.2016.05.132.
De Domenico, D., and E. Gandelli. 2021. “Advanced modeling of SMA flag-shaped hysteresis for nonlinear time-history analysis in SAP2000.” J. Struct. Eng. 147 (11): 06021004. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003176.
De Domenico, D., E. Gandelli, and V. Quaglini. 2020a. “Adaptive isolation system combining low-friction sliding pendulum bearings and SMA-based gap dampers.” Eng. Struct. 212 (Jun): 110536. https://doi.org/10.1016/j.engstruct.2020.110536.
De Domenico, D., H. Qiao, Q. Wang, Z. Zhu, and G. Marano. 2020b. “Optimal design and seismic performance of multi-tuned mass damper inerter (MTMDI) applied to adjacent high-rise buildings.” Struct. Des. Tall Special Build. 29 (14): e1781. https://doi.org/10.1002/tal.1781.
De Domenico, D., and G. Ricciardi. 2018a. “Earthquake-resilient design of base isolated buildings with TMD at basement: Application to a case study.” Soil Dyn. Earthquake Eng. 113 (Oct): 503–521. https://doi.org/10.1016/j.soildyn.2018.06.022.
De Domenico, D., and G. Ricciardi. 2018b. “An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI).” Earthquake Eng. Struct. Dyn. 47 (5): 1169–1192. https://doi.org/10.1002/eqe.3011.
De la Cruz, S. T. 2003. “Contribution to the assessment of the efficiency of friction dissipators for seismic protection of buildings.” Ph.D. thesis, Dept. of Terrain Engineering Geophysical Cartography, Universitat Politecnica de Catalunya.
Demetriou, D., and N. Nikitas. 2016. “A novel hybrid semi-active mass damper configuration for structural applications.” Appl. Sci. 6 (12): 397. https://doi.org/10.3390/app6120397.
Demetriou, D., N. Nikitas, and K. D. Tsavdaridis. 2015. “Semi-active tuned mass dampers of buildings: A simple control option.” Am. J. Eng. Appl. Sci. 8 (4): 620–632. https://doi.org/10.3844/ajeassp.2015.620.632.
Den Hartog, J. P. 1947. Mechanical vibrations. 3rd ed. New York: McGraw-Hill.
Den Hartog, J. P. 1956. Mechanical vibrations. 4th ed. New York: McGraw-Hill.
DesRoches, R., M. Comerio, M. Eberhard, W. Mooney, and J. Glenn. 2011. “Overview of the 2010 Haiti earthquake.” Supplement, Earthquake Spectra 27 (S1): 1–21. https://doi.org/10.1193/1.3630129.
Di Domenico, E. 1994. “Passive vibration tuning with neural networks.” In Proc., Smart Structures and Materials, 152–162. Bellingham, WA: International Society for Optics and Photonics.
Dimarogonas, A. D., and A. Kollias. 1993. “‘Smart’ electrorheological fluid dynamic vibration absorber.” In Vol. 11757 of Proc., Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf., 7–15. New York: ASME.
Di Matteo, A., T. Furtmuller, C. Adam, and A. Pirrotta. 2017a. “Earthquake excited base-isolated structures protected by tuned liquid column dampers: Design approach and experimental verification.” Procedia Eng. 199 (Jan): 1574–1579. https://doi.org/10.1016/j.proeng.2017.09.060.
Di Matteo, A., T. Furtmuller, C. Adam, and A. Pirrotta. 2017b. “Optimal design of tuned liquid column dampers for seismic response control of base-isolated structures.” Acta Mech. 229 (2): 437–454. https://doi.org/10.1007/s00707-017-1980-7.
Di Matteo, A. D., C. Masnata, and A. Pirrotta. 2019. “Hybrid passive control strategies for reducing the displacements at the base of seismic isolated structures.” Front. Built Environ. 5 (Nov): 132. https://doi.org/10.3389/fbuil.2019.00132.
Djajakesukma, S. L., B. Samali, and H. Nguyen. 2002. “Study of a semi-active stiffness damper under various earthquake inputs.” Earthquake Eng. Struct. Dyn. 31 (10): 1757–1776. https://doi.org/10.1002/eqe.181.
Domaneschi, M., L. Martinelli, and F. Perotti. 2016. “Wind and earthquake protection of cable-supported bridges.” Proc. Inst. Civ. Eng. Bridge Eng. 169 (3): 157–171. https://doi.org/10.1680/bren.14.00026.
Doyle, J. C., K. Glover, P. P. Khargonekar, and B. A. Francis. 1989. “State-space solutions to standard H2 and H control problems.” IEEE Trans. Autom. Control 34 (8): 831–847. https://doi.org/10.1109/9.29425.
Dyke, S. J., and B. F. Spencer Jr. 1996. “Seismic response control using multiple MR dampers.” In Proc., 2nd Int. Workshop on Structural Control, 163–173. Washington, DC: International Association for Structural Control and Monitoring.
Dyke, S. J., B. F. Spencer Jr., M. K. Sain, and J. D. Carlson. 1996a. “Experimental verification of semi-active structural control strategies using acceleration feedback.” In Vol. 3 of Proc., 3rd Int. Conf. on Motion and Vibration Control, 291–296. Tokyo: J-STAGE.
Dyke, S. J., B. F. Spencer Jr., M. K. Sain, and J. D. Carlson. 1996b “Modeling and control of magnetorheological dampers for seismic response reduction.” Smart Mater. Struct. 5 (5): 565–575. https://doi.org/10.1088/0964-1726/5/5/006.
Dyke, S. J., B. F. Spencer Jr., M. K. Sain, and J. D. Carlson. 1996c. “Seismic response reduction using magnetorheological dampers.” In Proc., IFAC World Congress, 145. Laxenburg, Austria: IFAC.
Dyke, S. J., G. Turan, J. M. Caicedo, L. A. Bergman, and S. Hague. 2003. “Phase I benchmark control problem for seismic response of cable-stayed bridges.” J. Struct. Eng. 129 (7): 857–872. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(857).
Eason, R. P., C. Sun, A. J. Dick, and S. Nagarajaiah. 2013. “Attenuation of a linear oscillator using a nonlinear and a semi-active tuned mass damper in series.” J. Sound Vib. 332 (1): 154–166. https://doi.org/10.1016/j.jsv.2012.07.048.
Elias, S. 2019. “Effect of SSI on vibration control of structures with tuned vibration absorbers.” Shock Vib. 2019: 12. https://doi.org/10.1155/2019/7463031.
Elias, S., and V. Matsagar. 2014a. “Distributed multiple tuned mass dampers for wind vibration response control of high-rise building.” J. Eng. 2014: 11. https://doi.org/10.1155/2014/198719.
Elias, S., and V. Matsagar. 2014b. “Wind response control of a 76-story benchmark building installed with distributed multiple tuned mass dampers.” J. Wind Eng. 11 (2): 37–49.
Elias, S., and V. Matsagar. 2015. “Optimum tuned mass damper for wind and earthquake response control of high-rise building.” In Vol. 2 of Advances in structural engineering: Dynamics, 1475–1487. New York: Springer.
Elias, S., and V. Matsagar. 2017. “Effectiveness of tuned mass dampers in seismic response control of isolated bridges including soil-structure interaction.” Lat. Am. J. Solids Struct. 14 (13): 2324–2341. https://doi.org/10.1590/1679-78253893.
Elias, S., V. Matsagar, and T. K. Datta. 2016. “Effectiveness of distributed tuned mass dampers for multi-mode control of chimney under earthquakes.” Eng. Struct. 124 (Oct): 1–16. https://doi.org/10.1016/j.engstruct.2016.06.006.
Elias, S., V. Matsagar, and T. K. Datta. 2019a. “Along-wind response control of chimneys with distributed multiple tuned mass dampers.” Struct. Control Health Monit. 26 (1): e2275. https://doi.org/10.1002/stc.2275.
Elias, S., V. Matsagar, and T. K. Datta. 2019b. “Distributed tuned mass dampers for multi-mode control of benchmark building under seismic excitations.” J. Earthquake Eng. 23 (7): 1137–1172. https://doi.org/10.1080/13632469.2017.1351407.
Elias, S., R. Rupakhety, D. De Domenico, and S. Olafsson. 2021. “Seismic response control of bridges with nonlinear tuned vibration absorbers.” Structures 34 (Dec): 262–274. https://doi.org/10.1016/j.istruc.2021.07.066.
Engle, T., H. Mahmoud, and A. Chulahwat. 2015. “Hybrid tuned mass damper and isolation floor slab system optimized for vibration control.” J. Earthquake Eng. 19 (8): 1197–1221. https://doi.org/10.1080/13632469.2015.1037406.
Etedali, S., M. R. Sohrabi, and S. Tavakoli. 2013. “Optimal PD/PID control of smart base isolated buildings equipped with piezoelectric friction dampers.” Earthquake Eng. Eng. Vibr. 12 (1): 39–54. https://doi.org/10.1007/s11803-013-0150-8.
Etedali, S., S. Tavakoli, and M. R. Sohrabi. 2016. “Design of a decoupled PID controller via MOCS for seismic control of smart structures.” Earthquakes Struct. 10 (5): 1067–1087. https://doi.org/10.12989/eas.2016.10.5.1067.
Fabrizio, C., A. M. Di Leo, and A. A. Di Egidio. 2019. “Tuned mass damper and base isolation: A unitary approach for the seismic protection of conventional frame structures.” J. Eng. Mech. 145 (4): 04019011. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001581.
Faravelli, L., and B. F. Spencer Jr., eds. 2003. Proceedings of the sensors and smart structures technology. New York: Wiley.
FEMA. 2000. Prestandard and commentary for the seismic rehabilitation of buildings. Washington, DC: FEMA.
Feng, M., and A. Mita. 1995. “Vibration control of tall buildings using mega sub-configuration.” J. Eng. Mech. 121 (10): 1082–1088. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:10(1082).
Feng, Q., and M. Shinozuka. 1990. “Use of a variable damper for hybrid control of bridge response under earthquake.” In Proc., US National Workshop on Structural Control Research, 107–112. Los Angeles: Univ. of Southern California.
Feng, Q., and M. Shinozuka. 1993. “Control of seismic response of bridge structures using variable dampers.” J. Intell. Mater. Syst. Struct. 4 (1): 117–122. https://doi.org/10.1177/1045389X9300400114.
Fisco, N. R., and H. Adeli. 2011a. “Smart structures: Part I—Active and semi-active control.” Sci. Iran. 18 (3): 275–284. https://doi.org/10.1016/j.scient.2011.05.034.
Fisco, N. R., and H. Adeli. 2011b. “Smart structures: Part II—Hybrid control systems and control strategies.” Sci. Iran. 18 (3): 285–295. https://doi.org/10.1016/j.scient.2011.05.035.
Friswell, M. I., and D. J. Inman. 1998. “Hybrid damping treatments in thermal environments.” In Smart materials and structures, edited by G. R. Tomlinson and W. A. Bullough, 667–674. Bristol, UK: IOP Publishing.
Fu, T. S., and E. A. Johnson. 2009. “Distributed mass damper system for integrating structural and environmental controls in buildings.” J. Eng. Mech. 137 (3): 205–213. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000211.
Fu, T. S., and E. A. Johnson. 2011. “Distributed mass damper system for integrating structural and environmental controls in buildings.” J. Eng. Mech. 137 (3): 205–213. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000211.
Fu, W., C. Zhang, L. Sun, M. Askari, B. Samali, K. L. Chung, and P. Sharifi. 2017. “Experimental investigation of a base isolation system incorporating MR dampers with the high-order single step control algorithm.” Appl. Sci. 7 (4): 344. https://doi.org/10.3390/app7040344.
Fujinami, T., Y. Saito, M. Masayuki, Y. Koike, and K. Tanida. 2001. “Hybrid mass damper system controlled by H control theory for reducing bending-torsion vibration of an actual building.” Earthquake Eng. Struct. Dyn. 30 (11): 1639–1653. https://doi.org/10.1002/eqe.85.
Fujino, Y., B. M. Pacheco, P. Chaiseri, and L. M. Sun. 1988. “Parametric studies on tuned liquid damper (TLD) using circular containers by free-oscillation experiments.” Struct. Eng. Earthquake Eng. 5 (2): 381–391.
Fujita, T., M. Shimazaki, Y. Hayamizu, S. Aizawa, M. Higashino, and N. Haniuda. 1994. “Semiactive seismic isolation system using controllable friction damper.” Bull. Earthquake Resistant Struct. Res. Center 27 (Mar): 21–31.
Fujitani, H., L. Midorikawa, Y. Kitagawa, T. Miyoshi, H. Kawamura, A. Tani, and T. Mochio. 1998. “Seismic response control tests and simulations by fuzzy optimal logic of building structures.” Eng. Struct. 20 (3): 164–175. https://doi.org/10.1016/S0141-0296(97)00075-8.
Furtmüller, T., A. Di Matteo, C. Adam, and A. Pirrotta. 2019. “Base-isolated structure equipped with tuned liquid column damper: An experimental study.” Mech. Syst. Sig. Process. 116 (Feb): 816–831. https://doi.org/10.1016/j.ymssp.2018.06.048.
Gao, H., K. C. S. Kwok, and B. Samali. 1997. “Optimization of tuned liquid column dampers.” Eng. Struct. 19 (6): 476–486. https://doi.org/10.1016/S0141-0296(96)00099-5.
Gao, P., C. Xiang, H. Liu, and H. Zhou. 2018. “Reducing variable frequency vibrations in a powertrain system with an adaptive tuned vibration absorber group.” J. Sound Vib. 425 (1): 82–101. https://doi.org/10.1016/j.jsv.2018.03.034.
Gaur, S., S. Elias, T. Höbbel, V. A. Matsagar, and K. Thiele. 2020. “Tuned mass dampers in wind response control of wind turbine with soil-structure interaction.” Soil Dyn. Earthquake Eng. 132 (May): 106071. https://doi.org/10.1016/j.soildyn.2020.106071.
Gavin, H., C. Alhan, and N. Oka. 2003. “Fault tolerance of semi-active seismic isolation.” J. Struct. Eng. 129 (7): 922–932. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(922).
Gavin, H. P., and U. Aldemir. 2005. “Optimal control of earthquake response using semi-active isolation.” J. Eng. Mech. 131 (8): 769–776. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:8(769).
Gavin, H. P., and A. Zaicenco. 2007. “Performance and reliability of semi-active equipment isolation.” J. Sound Vib. 306 (1–2): 74–90. https://doi.org/10.1016/j.jsv.2007.05.039.
Gaviria, C. A., and L. A. Montejo. 2018. “Optimal wavelet parameters for system identification of civil engineering structures.” Earthquake Spectra 34 (1): 197–216. https://doi.org/10.1193/092016EQS154M.
Ghodrati Amiri, G., A. Abdolahi Rad, and N. Khanmohamadi Hazaveh. 2014. “Wavelet-based method for generating nonstationary artificial pulse-like near-fault ground motions.” Comput.-Aided Civ. Infrastruct. Eng. 29 (10): 758–770. https://doi.org/10.1111/mice.12110.
Goel, R. K. 1998. “Effects of supplemental viscous damping on seismic response of asymmetric-plan systems.” Earthquake Eng. Struct. Dyn. 27 (2): 125–141. https://doi.org/10.1002/(SICI)1096-9845(199802)27:2%3C125::AID-EQE720%3E3.0.CO;2-6.
Graf, W., S. Freitag, M. Kaliske, and J. U. Sickert. 2010. “Recurrent neural networks for uncertain time-dependent structural behavior.” Comput.-Aided Civ. Infrastruct. Eng. 25 (5): 322–323. https://doi.org/10.1111/j.1467-8667.2009.00645.x.
Gsell, D., G. Feltrin, and M. Motavalli. 2007. “Adaptive tuned mass damper based on pre-stress able leaf-springs.” J. Intell. Mater. Syst. Struct. 18 (8): 845–851. https://doi.org/10.1177/1045389X06073641.
Gu, X., J. Li, Y. Li, and M. Askari. 2016. “Frequency control of smart base isolation system employing a novel adaptive magneto-rheological elastomer base isolator.” J. Intell. Mater. Syst. Struct. 27 (7): 849–858. https://doi.org/10.1177/1045389X15595291.
Guclu, R. 2006. “Sliding mode and PID control of a structural system against earthquake.” Math. Comput. Modell. 44 (1–2): 210–217. https://doi.org/10.1016/j.mcm.2006.01.014.
Guclu, R., and H. Yazici. 2007. “Fuzzy logic control of a non-linear structural system against earthquake induced vibration.” J. Vib. Control 13 (11): 1535–1551. https://doi.org/10.1177/1077546307077663.
Guclu, R., and H. Yazici. 2008. “Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers.” J. Sound Vib. 318 (1): 36–49. https://doi.org/10.1016/j.jsv.2008.03.058.
Guclu, R., and H. Yazici. 2009. “Seismic-vibration mitigation of a nonlinear structural system with an ATMD through a fuzzy PID controller.” Nonlinear Dyn. 58 (3): 553–564. https://doi.org/10.1007/s11071-009-9500-5.
Gupta, V., M. Sharma, N. Thakur, and S. P. Singh. 2011. “Active vibration control of a smart plate using a piezoelectric sensor–actuator pair at elevated temperatures.” Smart Mater. Struct. 20 (10): 105023. https://doi.org/10.1088/0964-1726/20/10/105023.
Gutierrez Soto, M., and H. Adeli. 2017. “Recent advances in control algorithms for smart structures and machines.” Expert Syst. 34 (2): e12205. https://doi.org/10.1111/exsy.12205.
Han, Q., X. Du, J. Liu, Z. Li, L. Li, and J. Zhao. 2009. “Seismic damage of highway bridges during the 2008 Wenchuan earthquake.” Earthquake Eng. Eng. Vibr. 8 (2): 263–273. https://doi.org/10.1007/s11803-009-8162-0.
Han, S., and P. Tsopelas. 2006. “Active/passive seismic control of structures.” J. Earthquake Eng. 10 (4): 509–526. https://doi.org/10.1142/S1363246906002827.
Haroun, M., J. Pires, and A. Won. 1994. “Active orifice control in hybrid liquid dampers.” In Proc., 1st World Conf. on Structural Control. Los Angeles: International Association for Structural Control.
Hashimoto, T., K. Fujita, and I. Takewaki. 2015. “Innovative base-isolated building with large mass-ratio TMD at basement for greater earthquake resilience.” Future Cities Environ. 1 (9): 1–19.
He, W., and A. K. Agrawal. 2007. “Passive and hybrid control systems for seismic protection of a benchmark cable-stayed bridge.” Struct. Control Health Monit. 14 (1): 1–26. https://doi.org/10.1002/stc.81.
He, W. L., A. K. Agrawal, and J. N. Yang. 2003. “Novel semi-active friction controller for linear structures against earthquakes.” J. Struct. Eng. 129 (7): 941–950. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(941).
Heidari, A. H., S. Etedali, and M. R. Javaheri-Tafti. 2016. “A hybrid LQR-PID control design for seismic control of buildings equipped with ATMD.” Front. Struct. Civ. Eng. 12 (1): 44–57. https://doi.org/10.1007/s11709-016-0382-6.
Heo, G., C. Kim, S. Jeon, C. Lee, and J. Jeon. 2017. “A hybrid seismic response control to improve performance of a two-span bridge.” Struct. Eng. Mech. 61 (5): 675–684. https://doi.org/10.12989/sem.2017.61.5.675.
Heo, G., C. Kim, S. Jeon, S. Seo, and J. Jeon. 2016. “Research on hybrid seismic response control system for motion control of two span bridge.” J. Phys. Conf. Ser. 744 (1): 012043. https://doi.org/10.1088/1742-6596/744/1/012043.
Hino, J., Y. Futabatake, and T. Yoshimura. 1994. “Semi-active dynamic absorber using the fuzzy theory for a beam subjected to moving loads.” Trans. Jpn. Soc. Mech. Eng. Part C 60: 842–849. https://doi.org/10.1299/kikaic.60.842.
Housner, G. W., L. A. Bergman, T. K. Caughey, A. G. Chassiakos, R. O. Claus, S. F. Masri, R. E. Skelton, T. T. Soong, B. F. Spencer, and J. T. Yao. 1997. “Structural control: Past, present, and future.” J. Eng. Mech. 123 (9): 897–971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897).
Housner, G. W., S. F. Masri, and A. G. Chassiakos, eds. 1994. Proc., 1st world conf. on structural control. Los Angeles: International Association for Structural Control.
Housner, G. W., T. T. Soong, and S. F. Masri. 1996. “Second generation of active structural control in civil engineering.” Comput.-Aided Civ. Infrastruct. Eng. 11 (5): 289–296. https://doi.org/10.1111/j.1467-8667.1996.tb00443.x.
Hrovat, D., P. Barak, and M. Rabins. 1982. “Reliability of applied semi-active structural control system.” J. Eng. Mech. 109 (3): 691–705. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:3(691).
Hrovat, D., P. Barak, and M. Rabins. 1983. “Semi-active versus passive or active tuned mass dampers for structural control.” J. Eng. Mech. 109 (3): 691–705. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:3(691).
Huang, S. C., D. J. Inman, and E. M. Austin. 1996. “Some design considerations for active and passive constrained layer damping treatments.” Smart Mater. Struct. 5 (3): 301–313. https://doi.org/10.1088/0964-1726/5/3/008.
Huang, X., X. Liu, and H. Hua. 2014. “On the characteristics of an ultra-low frequency nonlinear isolator using sliding beam as negative stiffness.” J. Mech. Sci. Technol. 28 (3): 813–822. https://doi.org/10.1007/s12206-013-1205-5.
Hung, S. L., and H. Adeli. 1994. “A parallel genetic/neural network learning algorithm for MIMD shared memory machines.” IEEE Trans. Neural Networks 5 (6): 900–909. https://doi.org/10.1109/72.329686.
Hunt, S. J. 2002. “Semi-active smart-dampers and resettable actuators for multi-level seismic hazard mitigation of steel moment resisting frames.” Master’s thesis, Mechanical Engineering, Univ. of Canterbury.
Huo, L., G. Song, H. Li, and K. Grigoriadis. 2008. “H robust control design of active structural vibration suppression using an active mass damper.” Smart Mater. Struct. 17 (1): 015021. https://doi.org/10.1088/0964-1726/17/01/015021.
Iemura, H., and M. H. Pradono. 2002. “Passive and semi-active seismic response control of a cable-stayed bridge.” Struct. Control Health Monit. 9 (3): 189–204. https://doi.org/10.1002/stc.12.
Inman, D. J., and M. J. Lam. 1997. “Active constrained layer damping treatments.” In Vol. 1 of Proc., 6th Int. Conf. on Recent Advances in Structural Dynamics, edited by N. S. Ferguson, H. F. Wolfe, and C. Mei, 1–20. Southampton, UK: Univ. of Southampton.
Irschik, H. 2002. “A review on static and dynamic shape control of structures by piezoelectric actuation.” Eng. Struct. 24 (1): 5–11. https://doi.org/10.1016/S0141-0296(01)00081-5.
Irwin, P. A., and B. Breukelman. 2001. “Recent applications of damping systems for wind response.” In Proc., 6th World Congress of the Council on Tall Buildings and Urban Habitat. Chicago: CTBUH.
Iwanami, K., and K. Seto. 1984. “Optimum design of dual tuned mass dampers and their effectiveness.” Proc. Jpn. Soc. Mech. Eng. 50 (1): 44–52.
Jabbari, F., and J. E. Bobrow. 2002. “Vibration suppression with resettable device.” J. Eng. Mech. 128 (9): 916–924. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(916).
Jabbari, F., W. E. Schmitendorf, and J. N. Yang. 1995. “H control for seismic-excited buildings with acceleration feedback.” J. Eng. Mech. 121 (9): 994–1002. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:9(994).
Jagadish, K. S., B. K. R. Prasad, and P. V. Rao. 1979. “Inelastic vibration absorber subjected to earthquake ground motions.” Earthquake Eng. Struct. Dyn. 7 (4): 317–326. https://doi.org/10.1002/eqe.4290070403.
Jalihal, P., and S. Utka. 1998. “Active control in passively base isolated building subjected to low power excitations.” Comput. Struct. 66 (2–3): 211–224. https://doi.org/10.1016/S0045-7949(97)00070-9.
Jangid, R. S. 2005. “Computational numerical models for seismic response of structures isolated by sliding systems.” Struct. Control Health Monit. 12 (1): 117–137. https://doi.org/10.1002/stc.59.
Jangid, R. S. 2008. “Equivalent linear stochastic seismic response of isolated bridges.” J. Sound Vib. 309 (3–5): 805–822. https://doi.org/10.1016/j.jsv.2007.07.071.
Jangid, R. S., and T. K. Datta. 1995. “Seismic behaviour of base-isolated buildings: A state-of-the art review.” Proc. Inst. Civ. Eng. Struct. Build. 110 (2): 186–203. https://doi.org/10.1680/istbu.1995.27599.
Jangid, R. S., and T. K. Datta. 1997. “Performance of multiple tuned mass dampers for torsionally coupled system.” Earthquake Eng. Struct. Dyn. 26 (3): 307–317. https://doi.org/10.1002/(SICI)1096-9845(199703)26:3%3C307::AID-EQE639%3E3.0.CO;2-8.
Jangid, R. S., and J. M. Kelly. 2001. “Base isolation for near-fault motions.” Earthquake Eng. Struct. Dyn. 30 (5): 691–707. https://doi.org/10.1002/eqe.31.
Johnson, E. A., J. C. Ramallo, B. F. Spencer, and M. K. Sain. 1999. “Intelligent base isolation systems.” In Proc., 2nd World Conf. on Structural Control, 367–376. Los Angeles: International Association for Structural Control.
Johnson, E. A., P. G. Voulgaris, and L. A. Bergman. 1998. “Multiobjective optimal structural control of the Notre Dame building model benchmark.” Earthquake Eng. Struct. Dyn. 27 (11): 1165–1187. https://doi.org/10.1002/(SICI)1096-9845(1998110)27:11%3C1165::AID-EQE777%3E3.0.CO;2-8.
Joshi, A. S., and R. S. Jangid. 1997. “Optimum parameters of multiple tuned mass dampers for base-excited damped systems.” J. Sound Vib. 202 (5): 657–667. https://doi.org/10.1006/jsvi.1996.0859.
Jung, H. J., K. S. Park, B. F. Spencer Jr., and I. W. Lee. 2004. “Hybrid seismic protection of cable-stayed bridge.” Earthquake Eng. Struct. Dyn. 33 (7): 795–820. https://doi.org/10.1002/eqe.374.
Kang, J., H.-S. Kim, and D.-G. Lee. 2011. “Mitigation of wind response of a tall building using semi-active tuned mass dampers.” Struct. Des. Tall Special Build. 20 (5): 552–565. https://doi.org/10.1002/tal.609.
Kannan, S., H. M. Uras, and H. M. Aktan. 1995. “Active control of building seismic response by energy dissipation.” Earthquake Eng. Struct. Dyn. 24 (5): 747–759. https://doi.org/10.1002/eqe.4290240510.
Kapadia, R. K., and G. Kawiecki. 1997. “Experimental evaluation of segmented active constrained layer damping treatments.” J. Intell. Mater. Syst. Struct. 8 (2): 103–111. https://doi.org/10.1177/1045389X9700800201.
Kareem, A. 1983. “Mitigation of wind induced motion of tall buildings.” J. Wind Eng. Ind. Aerodyn. 11 (1–3): 273–284. https://doi.org/10.1016/0167-6105(83)90106-X.
Kareem, A. 1997. “Modelling of base-isolated buildings with passive dampers under winds.” J. Wind Eng. Ind. Aerodyn. 72 (1–3): 323–333. https://doi.org/10.1016/S0167-6105(97)00232-8.
Kareem, A., T. Kijewski, and Y. Tamura. 1999. “Mitigation of motions of tall buildings with specific examples of recent applications.” Wind Struct. 2 (3): 201–251. https://doi.org/10.12989/was.1999.2.3.201.
Kareem, A., and S. Kline. 1995. “Performance of multiple tuned mass dampers under random loading.” J. Struct. Eng. 121 (2): 348–361. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(348).
Karim, A., and H. Adeli. 2003. “Radial basis function neural network for work zone capacity and queue estimation.” J. Transp. Eng. 29 (5): 494–503. https://doi.org/10.1061/(ASCE)0733-947X(2003)129:5(494).
Kataria, N. P., and R. S. Jangid. 2014. “Optimum semi-active hybrid system for seismic control of the horizontally curved bridge with Magnetorheological damper.” Bridge Struct. 10 (4): 145–160. https://doi.org/10.3233/BRS-150083.
Kataria, N. P., and R. S. Jangid. 2016. “Seismic protection of the horizontally curved bridge with semi-active variable stiffness damper and isolation system.” Adv. Struct. Eng. 19 (7): 1103–1117. https://doi.org/10.1177/1369433216634477.
Kawashim, K., and S. Unjoh. 1994. “Seismic response control of bridges by variable dampers.” J. Struct. Eng. 120 (9): 2583–2601. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:9(2583).
Kaynia, A. M., and D. Veneziano. 1981. “Seismic effectiveness of tuned mass dampers.” J. Struct. Div. 107 (8): 1465–1484. https://doi.org/10.1061/JSDEAG.0005760.
Kelly, J. M. 1986. “Aseismic base isolation: Review and bibliography.” Soil Dyn. Earthquake Eng. 5 (4): 202–216. https://doi.org/10.1016/0267-7261(86)90006-0.
Kelly, J. M. 1997. Earthquake-resistant design with rubber. 2nd ed. Berlin: Springer.
Kelly, J. M. 1999. “The role of damper in seismic isolation.” Earthquake Eng. Struct. Dyn. 28 (1): 3–20. https://doi.org/10.1002/(SICI)1096-9845(199901)28:1%3C3::AID-EQE801%3E3.0.CO;2-D.
Kelly, J. M., G. Leitmann, and A. G. Soldatos. 1987. “Robust control of base-isolated structures under earthquake excitation.” J. Optim. Theory Appl. 53 (2): 159–180. https://doi.org/10.1007/BF00939213.
Kerber, F., S. Hurlebaus, B. M. Beadle, and U. Stöbener. 2007. “Control concepts for an active vibration isolation system.” Mech. Syst. Sig. Process. 21 (8): 3042–3059. https://doi.org/10.1016/j.ymssp.2007.04.003.
Kim, H., and H. Adeli. 2005a. “Hybrid control of irregular steel high-rise building structures under seismic excitations.” Int. J. Numer. Methods Eng. 63 (12): 1757–1774. https://doi.org/10.1002/nme.1336.
Kim, H., and H. Adeli. 2005b. “Hybrid control of smart structures using a novel wavelet-based algorithm.” Comput.-Aided Civ. Infrastruct. Eng. 20 (1): 7–22. https://doi.org/10.1111/j.1467-8667.2005.00373.x.
Kim, H. S. 2014. “Seismic response reduction of a building using top-story isolation system with MR damper.” Contemp. Eng. Sci. 7 (21): 979–986. https://doi.org/10.12988/ces.2014.49123.
Kim, H. S., P. N. Roschke, P. Y. Lin, and C. H. Loh. 2006. “Neuro-fuzzy model of hybrid semi-active base isolation system with FPS bearings and an MR damper.” Eng. Struct. 28 (7): 947–958. https://doi.org/10.1016/j.engstruct.2005.09.029.
Kim, S., S. Pietrzko, and M. J. Brennan. 2008. “Active vibration isolation using an electrical damper or an electrical dynamic absorber.” IEEE Trans. Control Syst. Technol. 16 (2): 245–254. https://doi.org/10.1109/TCST.2007.903376.
Kobori, T., Y. Inoue, K. Seto, H. Iemura, and A. Nishitani. 1998. “Structural control: Past, present and future.” In Proc., 2nd World Conf. on Structural Control. New York: Wiley.
Kori, J. G., and R. S. Jangid. 2008. “Semi-active control of seismically isolated bridges.” Int. J. Struct. Stab. Dyn. 8 (4): 547–568. https://doi.org/10.1142/S021945540800279X.
Krenk, S., and J. Høgsberg. 2008. “Tuned mass absorbers on damped structures under random load.” Probab. Eng. Mech. 23 (4): 408–415. https://doi.org/10.1016/j.probengmech.2007.04.004.
Krenk, S., and J. Høgsberg. 2013. “Equal modal damping design for a family of resonant vibration control formats.” J. Vib. Control 19 (9): 1294–1315. https://doi.org/10.1177/1077546312446796.
Krenk, S., and J. Høgsberg. 2014. “Tuned mass absorber on a flexible structure.” J. Sound Vib. 333 (6): 1577–1595. https://doi.org/10.1016/j.jsv.2013.11.029.
Krishnamoorthy, A. 2015. “Seismic control of continuous bridges using variable radius friction pendulum systems and viscous fluid dampers.” Int. J. Acoust. Vibr. 20 (1): 24–35. https://doi.org/10.20855/ijav.2015.20.1365.
Kulkarni, J. A., and R. S. Jangid. 2003. “Effects of superstructure flexibility on the response of base-isolated structures.” Shock Vib. 10 (1): 1–13. https://doi.org/10.1155/2003/368693.
Kumar, G., A. Kumar, and R. S. Jakka. 2018. “An adaptive LQR controller based on PSO and maximum predominant frequency approach for semi-active control scheme using MR damper.” Mech. Ind. 19 (1): 109. https://doi.org/10.1051/meca/2018018.
Kurata, N., T. Kobori, M. Takahashi, T. Ishibashi, N. Niwa, J. Tagami, and H. Midorikawa. 2000. “Forced vibration test of a building with semi-active damper system.” Earthquake Eng. Struct. Dyn. 29 (5): 629–645. https://doi.org/10.1002/(SICI)1096-9845(200005)29:5%3C629::AID-EQE928%3E3.0.CO;2-9.
Kurata, N., T. Kobori, M. Takahashi, N. Niwa, and H. Midorikawa. 1999. “Actual seismic response-controlled building with semi-active damper system.” Earthquake Eng. Struct. Dyn. 28 (11): 1427–1447. https://doi.org/10.1002/(SICI)1096-9845(199911)28:11%3C1427::AID-EQE876%3E3.0.CO;2-.
Kwakernaak, H. 1993. “Robust control and H-optimization—Tutorial paper.” Automatica 29 (2): 255–273. https://doi.org/10.1016/0005-1098(93)90122-A.
Lam, M. J., D. J. Inman, and W. R. Saunders. 1997. “Vibration control through passive constrained layer damping and active control.” J. Intell. Mater. Syst. Struct. 8 (8): 663–677. https://doi.org/10.1177/1045389X9700800804.
Lee, T. Y., and K. Kawashima. 2007. “Semi-active control of nonlinear isolated bridges with time delay.” J. Struct. Eng. 133 (2): 235–241. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(235).
Lee-Glauser, G. J., G. Ahmadi, and L. G. Horta. 1997. “Integrated passive/active vibration absorber for multistory buildings.” J. Struct. Eng. 123 (4): 499–504. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:4(499).
Lemura, H., and M. H. Pradono. 2002. “Passive and semi-active seismic response control of acable-stayed bridge.” J. Struct. Control 9 (Dec): 189–204. https://doi.org/10.1002/stc.12.
Lemura, H., and M. H. Pradono. 2005. “Simple algorithm for semi-active seismic response control of cable-stayed bridges.” Earthquake Eng. Struct. Dyn. 34 (4–5): 409–423. https://doi.org/10.1002/eqe.440.
Lesieutre, G. A., and U. Lee. 1996. “A finite element for beams having segmented active constrained layers with frequency-dependent viscoelastics.” Smart Mater. Struct. 5 (5): 615–627. https://doi.org/10.1088/0964-1726/5/5/010.
Li, C., and Y. Liu. 2002. “Further characteristics for multiple tuned mass dampers.” J. Struct. Eng. 128 (10): 1362–1365. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:10(1362).
Li, C., and Y. Liu. 2003. “Optimum multiple tuned mass dampers for structures under the ground acceleration based on the uniform distribution of system parameters.” Earthquake Eng. Struct. Dyn. 32 (5): 671–690. https://doi.org/10.1002/eqe.239.
Li, C., and Y. Liu. 2004. “Ground motion dominant frequency effect on the design of multiple tuned mass dampers.” J. Earthquake Eng. 8 (1): 89–105. https://doi.org/10.1080/13632460409350482.
Li, H., J. Liu, and J. Ou. 2011. “Seismic response control of a cable-stayed bridge using negative stiffness dampers.” Struct. Control Health Monit. 18 (Apr): 265–288. https://doi.org/10.1002/stc.368.
Li, H., H. T. Yang, I. Y. Kwon, and F. S. Ly. 2019. “Bio-inspired passive base isolator with tuned mass damper inerter for structural control.” Smart Mater. Struct. 28 (Aug): 105008. https://doi.org/10.1088/1361-665X/ab3239.
Li, Y., J. Li, W. Li, and B. Samali. 2013a. “Development and characterization of a magnetorheological elastomer based adaptive seismic isolator.” Smart Mater. Struct. 22 (Jan): 035005. https://doi.org/10.1088/0964-1726/22/3/035005.
Li, Y., J. Li, T. Tian, and W. Li. 2013b. “A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control.” Smart Mater. Struct. 23 (Aug): 129501. https://doi.org/10.1088/0964-1726/23/12/129501.
Li, Y., G. Zheng, F. Shen, and Y. Chen. 2019. “Innovative seismic resistant structure of shield building with base isolation and tuned-mass-damping for AP1000 nuclear power plants.” Eng. Comput. 36 (2): 1238–1257. https://doi.org/10.1108/EC-10-2018-0483.
Liao, W. H., and K. W. Wang. 1996. “A new active constrained layer configuration with enhanced boundary actions.” Smart Mater. Struct. 5 (5): 638–648. https://doi.org/10.1088/0964-1726/5/5/012.
Liao, W. H., and K. W. Wang. 1997. “On the active-passive hybrid control of structures with active constrained layer treatments.” J. Vib. Acoust. 119 (4): 563–572. https://doi.org/10.1115/1.2889763.
Lin, C., and H. Jheng. 2017. “Active vibration suppression of a motor-driven piezoelectric smart structure using adaptive fuzzy sliding mode control and repetitive control.” Appl. Sci. 7 (3): 240. https://doi.org/10.3390/app7030240.
Lin, C., G. Lin, and J. Wang. 2010a. “Protection of seismic structures using semi-active friction TMD.” Earthquake Eng. Struct. Dyn. 39 (6): 635–659. https://doi.org/10.1002/eqe.961.
Lin, C., L. Lu, G. Lin, and T. Wang. 2010b. “Vibration control of seismic structures using semi-active friction multiple tuned mass dampers.” Eng. Struct. 32 (10): 3404–3417. https://doi.org/10.1016/j.engstruct.2010.07.014.
Lin, C. C., C. M. Hu, J. F. Wang, and R. Y. Hu. 1994. “Vibration control effectiveness of passive tuned mass dampers.” J. Chin. Inst. Eng. 17 (3): 367–376. https://doi.org/10.1080/02533839.1994.9677600.
Lin, C.-C., C.-C. Chang, and H.-L. Chen. 2006a. “Optimal H output feedback control systems with time delay.” J. Eng. Mech. 132 (10): 1096–1105. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:10(1096).
Lin, C.-C., J.-M. Ueng, and T.-C. Huang. 1999. “Seismic response reduction of irregular buildings using passive tuned mass dampers.” Eng. Struct. 22 (May): 513–524. https://doi.org/10.1016/S0141-0296(98)00054-6.
Lin, P. Y., L. L. Chung, and C. H. Loh. 2005. “Semi-active control of building structures with semi-active tuned mass damper.” Comput.-Aided Civ. Infrastruct. Eng. 20 (1): 35–51. https://doi.org/10.1111/j.1467-8667.2005.00375.x.
Lin, P. Y., P. N. Roschke, and C. H. Loh. 2006b. “System identification and real application of a smart magneto-rheological damper.” In Proc., 2005 IEEE Int. Symp. on Intelligent Control Limassol. New York: IEEE.
Lin, P. Y., P. N. Roschke, and C. H. Loh. 2007. “Hybrid base isolation with magneto-rheological damper and fuzzy control.” Struct. Control Health Monit. 14 (3): 384–405. https://doi.org/10.1002/stc.163.
Lin, W. H., and A. K. Chopra. 2002. “Improving the seismic response of asymmetric one-story systems by supplemental viscous damping.” In Proc., 7th US National Conf. on Earthquake Engineering. Oakland, CA: Engineering Research Institute.
Lin, Y.-Y., C.-M. Cheng, and C.-H. Lee. 2000. “A tuned mass damper for suppressing the coupled flexural and torsional buffeting response of long-span bridges.” Eng. Struct. 22 (9): 1195–1204. https://doi.org/10.1016/S0141-0296(99)00049-8.
Liu, C., X. Jing, and F. Li. 2015. “Vibration isolation using a hybrid lever-type isolation system with an X-shape supporting structure.” Int. J. Mech. Sci. 98 (Jul): 169–177. https://doi.org/10.1016/j.ijmecsci.2015.04.012.
Liu, Y., and K. W. Wang. 1998. “Enhanced active constrained layer damping treatment with symmetrically and non-symmetrically distributed edge elements.” In Vol. 3327 of Smart structures and materials 1998: Passive damping and isolation, edited by L. P. Davis, 61–72. Bellingham, WA: SPIE.
Liut, D. A., E. E. Matheu, M. P. Singh, and D. T. Mook. 1999. “Neural-network control of building structures by a force-matching training scheme.” Earthquake Eng. Struct. Dyn. 28 (12): 1601–1620. https://doi.org/10.1002/(SICI)1096-9845(199912)28:12%3C1601::AID-EQE884%3E3.0.CO;2-G.
Lou, J. Y. K., L. D. Lutes, and J. J. Li. 1994. “Active tuned liquid damper for structural control.” In Proc., 1st World Conf. on Structural Control, 70–79. Los Angeles: International Association for Structural Control.
Love, J. S., M. J. Tait, and H. Toopchi-Nezhad. 2011. “A hybrid structural control system using a tuned liquid damper to reduce the wind induced motion of a base isolated structure.” Eng. Struct. 33 (3): 738–746. https://doi.org/10.1016/j.engstruct.2010.11.027.
Lu, L. Y., G. L. Lin, and C. H. Lin. 2009. “A unified analysis model for energy dissipation devices used in seismic-resistant structures.” Comput.-Aided Civ. Infrastruct. Eng. 24 (1): 41–61. https://doi.org/10.1111/j.1467-8667.2008.00567.x.
Madden, G. H., N. Wongprasert, and M. D. Symans. 2000. “Analytical study of an adaptive base-isolation system for seismic protection of buildings.” In Proc., 14th ASCE Engineering Mechanics Conf. Reston, VA: ASCE.
Madden, G. J., M. D. Symans, and N. Wongprasert. 2002. “Experimental verification of seismic response of building frame with adaptive sliding base-isolation system.” J. Struct. Eng. 128 (8): 1037–1045. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1037).
Madden, G. J., N. Wongprasert, and M. D. Symans. 2003. “Analytical and numerical study of a smart sliding base isolation system for seismic protection of buildings.” Comput.-Aided Civ. Infrastruct. Eng. 18 (1): 19–30. https://doi.org/10.1111/1467-8667.00296.
Madhekar, S. N., and R. S. Jangid. 2009. “Variable dampers for earthquake protection of benchmark highway bridges.” Smart Mater. Struct. 18 (11): 115011. https://doi.org/10.1088/0964-1726/18/11/115011.
Mahmoud, M. S., M. J. Terro, and M. Abdel-Rohman. 1998. “An LMI approach to H-control of time-delay systems for the benchmark problem.” Earthquake Eng. Struct. Dyn. 27 (9): 957–976. https://doi.org/10.1002/(SICI)1096-9845(199809)27:9%3C957::AID-EQE768%3E3.0.CO;2-S.
Makris, N. 1997. “Rigidity-plasticity-viscosity: Can electrorheological dampers protect base-isolated structures from near-source ground motions.” Earthquake Eng. Struct. Dyn. 26 (5): 571–591. https://doi.org/10.1002/(SICI)1096-9845(199705)26:5%3C571::AID-EQE658%3E3.0.CO;2-6.
Maslanka, M. 2019. “Optimised semi-active tuned mass damper with acceleration and relative motion feedbacks.” Mech. Syst. Sig. Process. 130 (Sep): 707–731. https://doi.org/10.1016/j.ymssp.2019.05.025.
Matin, A., S. Elias, and V. Matsagar. 2017. “Seismic response control of reinforced concrete bridges with soil-structure interaction.” Bridge Struct. Eng. 47 (1): 34–41.
Matin, A., S. Elias, and V. Matsagar. 2020. “Distributed multiple tuned mass dampers for seismic response control in bridges.” Proc. Inst. Civ. Eng. Struct. Build. 173 (3): 217–234. https://doi.org/10.1680/jstbu.18.00067.
Matsagar, V. A., and R. S. Jangid. 2004. “Influence of isolator characteristics on the response of base-isolated structures.” Eng. Struct. 26 (12): 1735–1749. https://doi.org/10.1016/j.engstruct.2004.06.011.
Matteo, A. D., T. Furtmüller, C. Adam, and A. Pirrotta. 2018. “Optimal design of tuned liquid column dampers for seismic response control of base-isolated structures.” Acta Mech. 229 (Feb): 437–454. https://doi.org/10.1007/s00707-017-1980-7.
Mead, D. J. 1999. Passive vibration control. New York: Wiley.
Miao, F. 2014. “Hybrid vibration control of self-anchored cable-stayed suspension bridge.” Adv. Mater. Res. 919–921: 556–559.
Mitu, A. M., I. Popescu, and T. Sireteanu. 2012. “Mathematical modelling of semi-active control with application to building seismic protection.” In Vol. 19 of BSG Proc., 88–99. Bucharest, Romania: Balkan Society of Geometers.
Miyama, T. 1992. “Seismic response of multi-story frames equipped with energy absorbing story on its top.” In Proc., 10th World Conf. of Earthquake Engineering, 4201–4206. Boca Raton, FL: CRC Press.
Mohammadi-Ghazi, R. M., A. K. Ghorbani-Tanha, and R. Rahimian. 2012. “Adaptive configuration tuned mass damper for mitigation of rotational vibrations.” J. Eng. Mech. 138 (8): 934–944. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000400.
Mohebbi, M., H. Dadkhah, and K. Shakeri. 2015. “Optimal hybrid base isolation and MR damper.” Iran Univ. Sci. Technol. 5 (4): 493–509.
Monzon, E. V., C. Wei, I. G. Buckle, and A. Itani. 2012. “Seismic response of full and hybrid isolated curved bridges.” In Proc., Structures Congress, 603–612. Reston, VA: ASCE.
Moon, K. S. 2010. “Vertically distributed multiple tuned mass dampers in tall buildings: Performance analysis and preliminary design.” Struct. Des. Tall Special Build. 19 (3): 347–366. https://doi.org/10.1002/tal.499.
Moon, K. S. 2015. “Integrated damping systems for tall buildings: Tuned mass damper/double skin facade damping interaction system.” Struct. Des. Tall Special Build. 25 (5): 232–244. https://doi.org/10.1002/tal.1237.
Morgan, R. A., and K. W. Wang. 2002a. “An active-passive piezoelectric absorber for structural vibration control under harmonic excitations with time-varying frequency. Part 1: Algorithm development and analysis.” J. Vib. Acoust. 124 (1): 77–83. https://doi.org/10.1115/1.1419201.
Morgan, R. A., and K. W. Wang. 2002b. “An active-passive piezoelectric absorber for structural vibration control under harmonic excitations with time-varying frequency. Part 2: Experimental validation and parametric study.” J. Vib. Acoust. 124 (1): 84–89. https://doi.org/10.1115/1.1419202.
Moutinho, C., A. Cunha, and J. M. D. Carvalho. 2015. “Implementation of a semi-active tuned mass damper to reduce vibrations in a slender footbridge.” In Proc., 7th ECCOMAS Thematic Conf. on Smart Structures and Materials. Porto, Portugal: Univ. of Porto.
Naderpour, H., N. Naji, D. Burkacki, and R. Jankowski. 2019. “Seismic response of high-rise buildings equipped with base isolation and non-traditional tuned mass dampers.” Appl. Sci. 9 (Jan): 1201. https://doi.org/10.3390/app9061201.
Nagarajaiah, S. 1994. “Fuzzy controller for structures with hybrid isolation systems.” In Proc., 1st World Conf. on Structural Control, TA2-67–TA2-76. Los Angeles: International Association for Structural Control.
Nagarajaiah, S. 2009. “Adaptive passive, semi-active, smart tuned mass dampers: Identification and control using empirical mode decomposition, Hilbert transform, and short-term Fourier transform.” Struct. Control Health Monit. 16 (Nov): 800–841. https://doi.org/10.1002/stc.349.
Nagarajaiah, S., and D. Mate. 1998. “Semi-active control of continuously variable stiffness system.” In Vol. 1 of Proc., Second World Conf. on Structural Control, 397–405. Chichester, NY: Wiley.
Nagarajaiah, S., and S. Sahasrabudhe. 2005. “Seismic response control of smart sliding isolated buildings using variable stiffness systems: An experimental and numerical study.” Earthquake Eng. Struct. Dyn. 35 (2): 177–197. https://doi.org/10.1002/eqe.514.
Nagarajaiah, S., and S. Sahasrabudhe. 2006. “Seismic response control of smart sliding isolated buildings using variable stiffness systems: An experimental and numerical study.” Earthquake Eng. Struct. Dyn. 35 (2): 177–197. https://doi.org/10.1002/eqe.514.
Nagarajaiah, S., S. Sahasrabudhe, and R. Iyer. 2000. “Seismic response of sliding isolated bridges with smart dampers subjected to near source ground motions.” In Proc., 14th Conf. on Analysis and Computation held in Conjunction with ASCE Structures Congress 2000. Reston, VA: ASCE.
Nagarajaiah, S., and E. Sonmez. 2007. “Structures with semi-active variable stiffness single/multiple tuned mass dampers.” J. Struct. Eng. 133 (1): 67–77. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:1(67).
Nagarajaiah, S., and N. Varadarajan. 2005. “Short time Fourier transform algorithm for wind response control of buildings with variable stiffness TMD.” Eng. Struct. 27 (3): 431–441. https://doi.org/10.1016/j.engstruct.2004.10.015.
Nagashima, I., R. Maseki, Y. Asami, J. Hirai, and H. Abiru. 2001. “Performance of hybrid mass damper system applied to a 36-story high-rise building.” Earthquake Eng. Struct. Dyn. 30 (11): 1615–1637. https://doi.org/10.1002/eqe.84.
Nakamura, Y., K. Tanaka, M. Nakayama, and T. Fujita. 2001. “Hybrid mass dampers using two types of electric servomotors: AC servomotors and linear-induction servomotors.” Earthquake Eng. Struct. Dyn. 30 (11): 1719–1743. https://doi.org/10.1002/eqe.89.
Narasimhan, S., and S. Nagarajaiah. 2006. “Smart base isolated buildings with variable friction systems: H controller and SAIVF device.” Earthquake Eng. Struct. Dyn. 35 (8): 921–942. https://doi.org/10.1002/eqe.559.
Natsiavas, S. 1992. “Steady state oscillations and stability of nonlinear dynamic vibration absorbers.” J. Sound Vib. 156 (2): 227–245. https://doi.org/10.1016/0022-460X(92)90695-T.
Nigdeli, S. M. 2014. “Effect of feedback on PID controlled active structures under earthquake excitations.” Earthquakes Struct. 6 (2): 217–235. https://doi.org/10.12989/eas.2014.6.2.217.
Nishitani, A., and Y. Inoue. 2001. “Overview of the application of active/semiactive control to building structures in Japan.” Earthquake Eng. Struct. Dyn. 30 (11): 1565–1574. https://doi.org/10.1002/eqe.81.
Nissen, J. C., K. Popp, and B. Schmalhorst. 1985. “Optimization of a non-linear dynamic vibration absorber.” J. Sound Vib. 99 (Mar): 149–154. https://doi.org/10.1016/0022-460X(85)90454-7.
Nonami, K., and T. Mizuno. 1996. “ Active structural damping of beam structures.” In Proc., 3rd Int. Conf. on Motion and Vibration Control. Tokyo: J-STAGE.
Okada, Y., B. Nagai, and K. Matsuda. 1988. “On a semi-actively controlled dynamic vibration damper.” Trans. Jpn. Soc. Mech. Eng. Part C 54 (503): 1427–1432. https://doi.org/10.1299/kikaic.54.1427.
Olgac, N., and B. T. Holm-Hansen. 1993a. “A new direction in active vibration absorption: Delayed resonator.” In Proc., Symp. on Mechatronics, ASME Dynamic Systems and Control Division, 15–20. New York: ASME.
Olgac, N., and B. T. Holm-Hansen. 1993b. “Vibration absorbers utilizing only position measurements for time varying excitation frequencies.” In Proc., Symp. on Mechatronics, ASME Dynamic Systems and Control Division, 223–229. New York: ASME.
Olgac, N., and B. T. Holm-Hansen. 1994. “Design characteristics of a novel tunable active vibration absorber.” In Active control of vibration and noise, 477–483. New York: ASME.
Olgac, N., D. M. McFarland, and B. T. Holm-Hansen. 1992. “Position feedback-induced resonance: The delayed resonator.” In Active control of noise and vibration, 113–119. New York: ASME.
Oliveira, F., M. A. Botto, P. Morais, and A. Suleman. 2017. “Semi-active structural vibration control of base-isolated buildings using magnetorheological dampers.” J. Low Freq. Noise Vibr. Act. Control 37 (3): 565–576. https://doi.org/10.1177/1461348417725959.
Onoda, J., T. Sano, and K. Kamiyama. 1992. “Active, passive, and semi-active vibration suppression by stiffness variation.” AIAA J. 30 (Dec): 2922–2929. https://doi.org/10.2514/3.48978.
Ormondroyd, J., and J. P. Den Hartog. 1928. “The theory of the dynamic vibration absorber.” Trans. Am. Soc. Mech. Eng. 50 (1928): A9–A22.
Ozbulut, O., M. Bitaraf, and S. Hurlebaus. 2011. “Adaptive control of base-isolated structure against near-field earthquakes using variable friction dampers.” Eng. Struct. 33 (12): 3143–3154. https://doi.org/10.1016/j.engstruct.2011.08.022.
Palazzo, B., and L. Petti. 1994. “Seismic response control in base isolated systems using tuned mass dampers.” In Proc., 1st World Conf. on Structural Control. Los Angeles: International Association for Structural Control.
Palazzo, B., and L. Petti. 1999. “Combined control strategy: Based isolation and tuned mass damping.” ISET J. Earthquake Technol. 36 (2–4): 121–137.
Pang, Y., W. He, and J. Zhong. 2021. “Risk-based design and optimization of shape memory alloy restrained sliding bearings for highway bridges under near-fault ground motions.” Eng. Struct. 241 (Aug): 112421. https://doi.org/10.1016/j.engstruct.2021.112421.
Pansare, A. P., and R. S. Jangid. 2003. “Tuned mass damper for torsionally coupled system.” Wind Struct. 6 (1): 23–40. https://doi.org/10.12989/was.2003.6.1.023.
Park, K., H. Jung, and I. Lee. 2003. “Hybrid control strategy for seismic protection of a benchmark cable-stayed bridge.” Eng. Struct. 25 (4): 405–417. https://doi.org/10.1016/S0141-0296(02)00182-7.
Park, K., H. Jung, W. Yoon, and I. Lee. 2005. “Robust hybrid isolation system for a seismically excited cable-stayed bridge.” J. Earthquake Eng. 9 (4): 497–524. https://doi.org/10.1142/S1363246905002043.
Pasil, A. Y., and R. S. Jangid. 2016. “Vibration control of bridge subjected to multi-axle vehicle using multiple tuned mass friction dampers.” Int. J. Adv. Struct. Eng. 8 (Jun): 213–227. https://doi.org/10.1007/s40091-016-0124-y.
Patil, H. R., and R. S. Jangid. 2015. “Development and analysis of passive hybrid energy dissipation system for steel moment resisting frame.” Int. J. Civ. Struct. Eng. 5 (4): 339–352. https://doi.org/10.6088/ijcser.2014050031.
Patil, S. J., and G. R. Reddy. 2012. “State of art review-base isolation systems for structures.” Int. J. Emerging Technol. Adv. Eng. 2 (7): 438–453.
Peterson, N. R. 1979. “Design of large-scale tuned mass dampers.” In Proc., ASCE Convention and Exposition. Reston, VA: ASCE.
Petti, L., G. Giannattasio, M. D. Iuliis, and B. Palazzo. 2010. “Small scale experimental testing to verify the effectiveness of the base isolation and tuned mass dampers combined control strategy.” Smart Struct. Syst. 6 (1): 57–72. https://doi.org/10.12989/sss.2010.6.1.057.
Pham, M. N., and H. J. Ahn. 2015. “Horizontal active vibration isolator (HAVI) using electromagnetic planar actuator (EPA).” Int. J. Precis. Eng. Manuf.-Green Technol. 2 (3): 269–274. https://doi.org/10.1007/s40684-015-0032-9.
Pinkaew, T., and Y. Fujino. 2001. “Effectiveness of semi-active tuned mass dampers under harmonic excitation.” Eng. Struct. 23 (7): 850–856. https://doi.org/10.1016/S0141-0296(00)00091-2.
Plump, J. M., and J. E. Hubbard Jr. 1986. “Modeling of an active constrained layer damper.” In Proc., 12th Int. Cong. on Acoustics. Toronto: International Commission for Acoustics.
Rabiee, R., and Y. Chae. 2018. “Adaptive base isolation system to achieve structural resiliency under both short- and long-period earthquake ground motions.” J. Intell. Mater. Syst. Struct. 30 (1): 16–31. https://doi.org/10.1177/1045389X18806403.
Ramallo, J. C., E. A. Johnson, B. F. Spencer, and M. K. Sain. 2000. “‘Smart’ base isolation systems.” In Proc., 14th Conf. on Analysis and Computation held in Conjunction with ASCE Structures Congress 2000. Reston, VA: ASCE.
Rao, P. B., and R. S. Jangid. 2001. “Performance of sliding systems under near-fault motions.” Nucl. Eng. Des. 203 (2–3): 259–272. https://doi.org/10.1016/S0029-5493(00)00344-7.
Reinhorn, A. M., C. Li, and M. C. Constantinou. 1995. Experimental & analytical investigation of seismic retrofit of structures with supplemental damping, Part 1: Fuid viscous damping devices. Buffalo, NY: National Center for Earthquake Engineering Research, State Univ. of New York at Buffalo.
Ren, M. Z. 2001. “A variant design of the dynamic vibration absorber.” J. Sound Vib. 245 (4): 762–770. https://doi.org/10.1006/jsvi.2001.3564.
Reuter, U., and B. Moeller. 2010. “Artificial neural networks for forecasting of fuzzy time series.” Comput.-Aided Civ. Infrastruct. Eng. 25 (5): 363–374. https://doi.org/10.1111/j.1467-8667.2009.00646.x.
Ricciardelli, F., A. Occhiuzzi, and P. Clemente. 2000. “Semi-active tuned mass damper control strategy for wind-excited structures.” J. Wind Eng. Ind. Aerodyn. 88 (1): 57–74. https://doi.org/10.1016/S0167-6105(00)00024-6.
Rozas, L., R. L. Boroschek, A. Tamburrino, and M. Rojas. 2016. “A bidirectional tuned liquid column damper for reducing the seismic response of buildings.” Struct. Control Health Monit. 23 (4): 621–640. https://doi.org/10.1002/stc.1784.
Ruangrassamee, A., and K. Kawashima. 2006. “Seismic response control of a cable-stayed bridge by variable dampers.” J. Earthquake Eng. 10 (1): 153–165. https://doi.org/10.1080/13632460609350591.
Runlin, Y., Z. Xiyuan, and L. Xihui. 2002. “Seismic structural control using semi-active tuned mass dampers.” Earthquake Eng. Eng. Vibr. 1 (1): 111–118. https://doi.org/10.1007/s11803-002-0014-0.
Ryan, M. W. 1993. “Control of an adaptive passive vibration absorber.” In Proc., ASME Winter Annual Meeting. New York: ASME.
Ryan, M. W., M. A. Franchek, and R. Bernhard. 1994. “Adaptive-passive vibration control of single frequency excitations applied to noise control.” In Vol. 94 of Proc., 1994 National Conf. on Noise Control Engineering, 461–466. Washington, DC: National Aeronautics and Space Administration.
Sadek, F., and B. Mohraz. 1998. “Semiactive control algorithms for structures with variable dampers.” J. Eng. Mech. 124 (9): 981–990. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:9(981).
Sadek, F., B. Mohraz, A. W. Taylor, and R. M. Chung. 1997. “A method of estimating the parameters of tuned mass dampers for seismic application.” Earthquake Eng. Struct. Dyn. 26 (6): 617–635. https://doi.org/10.1002/(SICI)1096-9845(199706)26:6%3C617::AID-EQE664%3E3.0.CO;2-Z.
Saeed, T. E., G. Nikolakopoulos, J.-E. Jonasson, and H. Hedlund. 2013. “A state-of-the-art review of structural control systems.” J. Vib. Control 21 (5): 919–937. https://doi.org/10.1177%2F1077546313478294.
Saha, P., and R. S. Jangid. 2009. “Seismic control of benchmark cable-stayed bridge using passive hybrid systems.” IES J. Part A: Civ. Struct. Eng. 2 (1): 1–16. https://doi.org/10.1080/19373260802417021.
Saha, S. K., K. Sepahvand, V. A. Matsagar, and W. R. Marburg. 2013. “Stochastic analysis of base-isolated liquid storage tanks with uncertain isolator parameters under random excitation.” Eng. Struct. 57 (Dec): 465–474. https://doi.org/10.1016/j.engstruct.2013.09.037.
Sahasrabudhe, S., and S. Nagarajaiah. 2005a. “Experimental study of sliding base-isolated buildings with magnetorheological dampers in near-fault earthquakes.” J. Struct. Eng. 131 (7): 1025–1034. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:7(1025).
Sahasrabudhe, S., S. Nagarajaiah, and C. Hard. 2000. “Experimental study of sliding isolated buildings with smart dampers subjected to near-source ground motions.” In Proc., 14th ASCE Engineering Mechanics Conf. Reston, VA: ASCE.
Sahasrabudhe, S. S., and S. Nagarajaiah. 2005b. “Semi-active control of sliding isolated bridges using MR dampers: An experimental and numerical study.” Earthquake Eng. Struct. Dyn. 34 (8): 965–983. https://doi.org/10.1002/eqe.464.
Saiidi, M. S., R. Nelson, M. Sadrossadat-Zadeh, and I. Buckle. 2007. “Shake table studies of a 4-span reinforced concrete bridge model.” In Proc., 2007 ANCER Meeting, Earthquake Engineering Research: From Strong Seismic Regions to Regions of Moderate Seismicity. Reston, VA: ASCE.
Saito, T., K. Shiba, and K. Tamura. 2001. “Vibration control characteristic of a hybrid mass damper system installed in tall buildings.” Earthquake Eng. Struct. Dyn. 30 (11): 1677–1696. https://doi.org/10.1002/eqe.87.
Sakai, F., S. Takaeda, and T. Tamaki. 1989. “Tuned liquid column dampers-new type device for suppression of building vibrations.” In Vol. 2 of Proc., Int. Conf. on Highrise Buildings. Nanjing, China: CTBUH.
Salajegheh, E., and A. Heidari. 2004. “Optimum design of structures against earthquake by adaptive genetic algorithm using wavelet networks.” Struct. Multidiscip. Optim. 28 (Oct): 277–285. https://doi.org/10.1007/s00158-004-0422-z.
Sanchez-Silva, M., and L. Garcia. 2001. “Earthquake damage assessment based on fuzzy logic and neural networks.” Earthquake Spectra 17 (1): 89–112. https://doi.org/10.1193/1.1586168.
Sarma, K., and H. Adeli. 2000a. “Fuzzy discrete multicriteria cost optimization of steel structures.” J. Struct. Eng. 126 (11): 1339–1347. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1339).
Sarma, K., and H. Adeli. 2000b. “Fuzzy genetic algorithm for optimization of steel structures.” J. Struct. Eng. 126 (5): 596–604. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:5(596).
Şen, M. A., M. Tinkir, and M. Kalyoncu. 2018. “Optimisation of a PID controller for a two-floor structure under earthquake excitation based on the bees algorithm.” J. Low Freq. Noise Vibr. Act. Control 37 (1): 107–127. https://doi.org/10.1177/1461348418757906.
Sener, M., and S. Utku. 1998. “Adaptive base isolation system for the control of seismic energy flow into buildings.” J. Intell. Mater. Syst. Struct. 9 (2): 104–115. https://doi.org/10.1177/1045389X9800900204.
Setareh, M. 2001. “Application of semi-active tuned mass dampers to base-excited systems.” Earthquake Eng. Struct. Dyn. 30 (3): 449–462. https://doi.org/10.1002/eqe.19.
Setareh, M. 2002. “Floor vibration control using semi-active tuned mass dampers.” Can. J. Civ. Eng. 29 (1): 76–84. https://doi.org/10.1139/l01-063.
Setareh, M., J. K. Ritchey, T. M. Murray, J. Koo, and M. Ahmadian. 2007. “Semi-active tuned mass damper for floor vibration control.” J. Struct. Eng. 133 (2): 242–250. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(242).
Shahryari, H., and M. R. Karami. 2019. “Summarized IDA curves by the wavelet transform and bees optimization algorithm.” Earthquakes Struct. 16 (2): 165–175. https://doi.org/10.12989/eas.2019.16.2.165.
Shen, I. Y. 1994. “Hybrid damping through intelligent constrained layer treatments.” J. Vib. Acoust. 116 (3): 341–349. https://doi.org/10.1115/1.2930434.
Shen, I. Y. 1996. “Stability and controllability of Euler-Bernoulli beams with intelligent constrained layer treatments.” J. Vib. Acoust. 118 (1): 70–77. https://doi.org/10.1115/1.2889637.
Shetty, K. K., G. Nayak, and N. K. Ramesh. 2012. “Dynamic response control of base isolated plane frame structure using multiple tuned mass dampers.” Bonfring Int. J. Ind. Eng. Manage. Sci. 2 (4): 9–14. https://doi.org/10.9756/BIJIEMS.1652.
Shi, W., L. Wang, Z. Lu, and H. Gao. 2018. “Study on adaptive passive and semi-active eddy current tuned mass damper with variable damping.” Sustainability 10 (2): 99. https://doi.org/10.3390/su10010099.
Shi, Y., T. C. Becker, S. Furukawa, E. Sato, and M. Nakashima. 2014. “LQR control with frequency-dependent scheduled gain for a semi-active floor isolation system.” Earthquake Eng. Struct. Dyn. 43 (9): 1265–1284. https://doi.org/10.1002/eqe.2352.
Shiba, K., S. Mase, Y. Yabe, and K. Tamura. 1998. “Active/passive vibration control systems for tall buildings.” Smart Mater. Struct. 7 (5): 588–598. https://doi.org/10.1088/0964-1726/7/5/003.
Shoaei, P., and H. T. Oromi. 2019. “A combined control strategy using tuned liquid dampers to reduce displacement demands of base-isolated structures: A probabilistic approach.” Front. Struct. Civ. Eng. 13 (Jul): 890–903. https://doi.org/10.1007/s11709-019-0524-8.
Shrimali, M. K., S. D. Bharti, and S. M. Dumne. 2015. “Seismic response analysis of coupled building involving MR damper and elastomeric base isolation.” Ain. Shams Eng. J. 6 (2): 457–470. https://doi.org/10.1016/j.asej.2014.12.007.
Singh, M. P., S. Singh, and L. M. Moreschi. 2002. “Tuned mass dampers for response control of torsional buildings.” Earthquake Eng. Struct. Dyn. 31 (4): 749–769. https://doi.org/10.1002/eqe.119.
Smith, J. F., and T. H. Nguyen. 2007. “Autonomous and cooperative robotic behavior based on fuzzy logic and genetic programming.” Integr. Comput.-Aided Eng. 14 (2): 141–159. https://doi.org/10.3233/ICA-2007-14203.
Snowdon, J. C. 1959. “Steady-state behavior of the dynamic absorber.” J. Acoust. Soc. Am. 31 (8): 1096–1103. https://doi.org/10.1121/1.1907832.
Snowdon, J. C. 1966. “Vibration of cantilevers to which dynamic absorbers are attached.” J. Acoust. Soc. Am. 39 (5A): 878–886. https://doi.org/10.1121/1.1909966.
Snowdon, J. C. 1975. “Vibration of simply supported rectangular and square plate to which lumped masses and dynamic vibration absorbers are attached.” J. Acoust. Soc. Am. 57 (3): 646–654. https://doi.org/10.1121/1.380488.
Soda, S., H. Kusumotoa, R. Chatani, N. Iwata, H. Fujitani, Y. Shiozaki, and T. Hiwatashi. 2003. “Semi-active seismic response control of base-isolated building with MR damper.” In Vol. 5052 of Proc., Smart Structures and Materials 2003: Damping and Isolation, 460–467. Bellingham, WA: International Society for Optics and Photonics.
Soneji, B. B., and R. S. Jangid. 2006. “Seismic control of cable-stayed bridge using semi-active hybrid system.” Bridge Struct. 2 (1): 45–60. https://doi.org/10.1080/15732480600765165.
Soneji, B. B., and R. S. Jangid. 2007. “Passive hybrid systems for earthquake protection of cable-stayed bridge.” Eng. Struct. 29 (1): 57–70. https://doi.org/10.1016/j.engstruct.2006.03.034.
Soni, D. P., B. B. Mistry, R. S. Jangid, and V. R. Panchal. 2011. “Seismic response of the double variable frequency pendulum isolator.” Struct. Control Health Monit. 18 (4): 450–470. https://doi.org/10.1002/stc.384.
Soong, T. T. 1988. “State-of-the-art review: Active structure control in civil engineering.” Eng. Struct. 10 (2): 74–84. https://doi.org/10.1016/0141-0296(88)90033-8.
Soong, T. T. 1992. Active structural control: Theory and practice. Harlow, UK: Longman Scientific and Technical.
Soong, T. T. 1996. “Active control practice in the US.” In Proc., 11th World Conf. on Earthquake Engineering. Oxford, UK: International Association for Earthquake Engineering.
Soong, T. T., and M. C. Constantinou. 1994. Passive and active structural vibration control in civil engineering. New York: Springer.
Soong, T. T., and G. F. Dargush. 1997. Passive energy dissipation systems in structural engineering. New York: Wiley.
Soong, T. T., and A. M. Reinhorn. 1993. “An overview of active and hybrid structural control research in the US.” Struct. Des. Tall Build. 2 (3): 193–209. https://doi.org/10.1002/tal.4320020303.
Soong, T. T., and B. F. Spencer Jr. 2000. “Active, semi-active and hybrid control of structures.” In Vol. 2834 of Proc., 12th World Conf. on Earthquake Engineering. Auckland, NZ: New Zealand Society for Earthquake Engineering.
Soong, T. T., and B. F. Spencer. 2002. “Supplemental energy dissipation: State-of-the-art and state-of-the-practice.” Eng. Struct. 24 (3): 243–259. https://doi.org/10.1016/S0141-0296(01)00092-X.
Spencer, B. F., Jr. 1996. “Recent trends in vibration control in the USA.” In Proc., 3rd Int. Conf. on Motion and Vibration Control, K1–6. Tokyo: J-STAGE.
Spencer, B. F. 2000. “Advanced in semi-active control of civil engineering structures.” Proc., 2nd European Conf. on Structural Control. Singapore: World Scientific.
Spencer, B. F., Jr., and S. J. Dyke. 1996. “Semi-active structural control: System identification for synthesis and analysis.” In Proc., 1st European Conf. on Structural Control. Singapore: World Scientific.
Spencer, B. F., Jr., S. J. Dyke, M. K. Sain, and J. D. Carlson. 1997. “Phenomenological model for magnetorheological dampers.” J. Eng. Mech. 123 (3): 230–238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230).
Spencer, B. F., and S. Nagarajaiah. 2003. “State of the art of structural control.” J. Struct. Eng. 129 (7): 845–856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845).
Spencer, B. F., Jr., and M. K. Sain. 1997. “Controlling buildings: A new frontier in feedback.” IEEE Control Syst. Mag. Spec Issue Emerging Technol. 17 (6): 19–35. https://doi.org/10.1109/37.642972.
Sriram, N., and S. Nagarajaiah. 2005. “A STFT semiactive controller for base isolated buildings with variable stiffness isolation systems.” Eng. Struct. 27 (4): 514–523. https://doi.org/10.1016/j.engstruct.2004.11.010.
Stanikzai, M. H., S. Elias, V. A. Matsagar, and A. K. Jain. 2019a. “Seismic response control of base-isolated buildings using multiple tuned mass dampers.” Struct. Des. Tall Special Build. 28 (3): e1576. https://doi.org/10.1002/tal.1576.
Stanikzai, M. H., S. Elias, V. A. Matsagar, and A. K. Jain. 2019b. “Seismic response control of base-isolated buildings using tuned mass dampers.” Aust. J. Struct. Eng. 21 (1): 310–321. https://doi.org/10.1080/13287982.2019.1635307.
Stanikzai, M. H., S. Elias, and R. Rupakhety. 2020. “Seismic response mitigation of base-isolated buildings.” Appl. Sci. 10 (4): 1230. https://doi.org/10.3390/app10041230.
Sun, J. Q., M. R. Jolly, and M. A. Norris. 1995. “Passive, adaptive, and active tuned vibration absorber—A survey.” J. Mech. Des. 117 (B): 234–242. https://doi.org/10.1115/1.2836462.
Sun, S., J. Yang, H. Du, S. Zhang, T. Yan, M. Nakano, and W. Li. 2018. “Development of magnetorheological elastomers–based tuned mass damper for building protection from seismic events.” J. Intell. Mater. Syst. Struct. 29 (8): 1777–1789. https://doi.org/10.1177/1045389X17754265.
Sunar, M., and S. S. Rao. 1999. “Recent advances in sensing and control of flexible structures via piezoelectric materials technology.” Appl. Mech. Rev. 52 (1): 1–16. https://doi.org/10.1115/1.3098923.
Symans, M. D., and M. C. Constantinou. 1998. “Seismic testing of a building structure with a semi-active fluid damper control system.” Earthquake Eng. Struct. Dyn. 26 (7): 759–777. https://doi.org/10.1002/(SICI)1096-9845(199707)26:7%3C759::AID-EQE675%3E3.0.CO;2-E.
Symans, M. D., and M. C. Constantinou. 1999. “Semi-active control systems for seismic protection of structures: A state-of-the-art review.” Eng. Struct. 21 (6): 469–487. https://doi.org/10.1016/S0141-0296(97)00225-3.
Symans, M. D., and S. W. Kelly. 1999. “Fuzzy logic control of bridge structures using intelligent semi-active seismic isolation systems.” Earthquake Eng. Struct. Dyn. 28 (1): 37–60. https://doi.org/10.1002/(SICI)1096-9845(199901)28:1%3C37::AID-EQE803%3E3.0.CO;2-Z.
Symans, M. D., G. H. Madden, and N. Wongprasert. 2000. “Experimental study of an adaptive base-isolation system for buildings.” In Vol. 1965 of Proc., 12th World Conf. on Earthquake Engineering. Upper Hutt, New Zealand: New Zealand Society for Earthquake Engineering.
Taha, A. E., S. Elias, V. Matsagar, and A. K. Jain. 2019. “Seismic response control of asymmetric buildings using tuned mass dampers.” Struct. Des. Tall Spec. Build. 28 (Dec): e1673. https://doi.org/10.1002/tal.1673.
Talyan, N., S. Elias, and V. Matsagar. 2021. “Earthquake response control of isolated bridges using supplementary passive dampers.” Pract. Period. Struct. Des. Constr. 26 (2): 04021002. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000563.
Taniguchi, T., A. Der-Kiureghian, and M. Melkumyan. 2008. “Effect of tuned mass damper on displacement demand of base-isolated structures.” Eng. Struct. 30 (12): 3478–3488. https://doi.org/10.1016/j.engstruct.2008.05.027.
Taylor, D. P., J. Metzger, and D. Horne. 2008. Structural control using hybrid spring-damper Isolator with integral gapping function, 90. North Tonawanda, NY: Taylor Devices.
Thint, M. P., F. S. Wong, and W. Dong. 1996. “Fuzzy-logic control with application to intelligent buildings.” Civ. Eng. Syst. 14 (Sep): 19–54. https://doi.org/10.1080/02630259608970209.
Tiwary, A., A. Tiwary, and A. Kumar. 2014. “State-of-art in active, semi-active, and hybrid control systems for tall buildings.” In Proc., National Conf. on Advances in Engineering and Technology. Ambala, India: Maharishi Markandeshwar Univ..
Trindade, M. A. 2007. “Optimization of active–passive damping treatments using piezoelectric and viscoelastic materials.” Smart Mater. Struct. 16 (6): 2159–2168. https://doi.org/10.1088/0964-1726/16/6/018.
Trindade, M. A. 2011. “Experimental analysis of active-passive vibration control using viscoelastic materials and extension and shear piezoelectric actuators.” J. Vib. Control 17 (6): 917–929. https://doi.org/10.1177/1077546309356042.
Trindade, M. A., and A. Benjeddou. 2002. “Hybrid active-passive damping treatments using viscoelastic and piezoelectric materials: Review and assessment.” J. Vib. Control 8 (6): 699–745. https://doi.org/10.1177/1077546029186.
Trindade, M. A., A. Benjeddou, and R. Ohayon. 2000a. “Finite element analysis of frequency- and temperature dependent hybrid active-passive vibration damping.” Rev. Europeenne Elem. Finis 9 (1–3): 89–111. https://doi.org/10.1080/12506559.2000.10511431.
Trindade, M. A., A. Benjeddou, and R. Ohayon. 2000b. “Modeling of frequency-dependent viscoelastic materials for active-passive vibration damping.” J. Vib. Acoust. 122 (2): 169–174. https://doi.org/10.1115/1.568429.
Tsai, H. 1995. “The effect of tuned-mass dampers on the seismic response of base-isolated structures.” Int. J. Solid Struct. 32 (8–9): 1199–1210. https://doi.org/10.1016/0020-7683(94)00150-U.
Tsai, H.-C., and G.-C. Lin. 1993. “Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems.” Earthquake Eng. Struct. Dyn. 22 (11): 957–973. https://doi.org/10.1002/eqe.4290221104.
Vakakis, A. F., L. I. Manevitch, O. Gendelman, and L. A. Bergman. 2003. “Dynamics of linear discrete systems connected to local, essentially non-linear attachments.” J. Sound Vib. 264 (3): 559–577. https://doi.org/10.1016/S0022-460X(02)01207-5.
Varadarajan, N., and S. Nagarajaiah. 2004. “Wind response control of building with variable stiffness tuned mass damper using EMD/HT.” J. Eng. Mech. 130 (4): 451–458. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(451).
Villaverde, R. 1994. “Seismic control of structures with damped resonant appendages.” In Vol. 1 of Proc., 1st World Conf. on Structural Control, 113–122. North Tonawanda, NY: Taylor Devices.
Von Flotow, A. H., A. Beard, and D. Bailey. 1994. “Adaptive tuned vibration absorbers: Tuning laws, tracking agility, sizing, and physical implementations.” In Proc., Noise-Con 94. Washington, DC: National Aeronautics and Space Administration.
Walsh, K. K., and M. M. Abdullah. 2006. “Adaptive base-isolation of civil structures using variable amplification.” Earthquake Eng. Eng. Vibr. 5 (Dec): 223–233. https://doi.org/10.1007/s11803-006-0643-9.
Wang, D., C. Zhuang, and Y. Zhang. 2018. “Seismic response characteristics of base-isolated AP1000 nuclear shield building subjected to beyond-design basis earthquake shaking.” Nucl. Eng. Technol. 50 (1): 170–181. https://doi.org/10.1016/j.net.2017.10.005.
Wang, K. W., and J. S. Lai. 1993a. “Control of an adaptive stiffness dynamic absorber for transient vibration suppression.” In Proc., 2nd Conf. on Recent Advances in Active Control of Sound and Vibration, 506–518. Lancaster, PA: Technomic Pub.
Wang, K. W., and J. S. Lai. 1993b. “Parametric control of structural vibrations via adaptive stiffness dynamic absorbers.” ASME J. Vibr. Acoust. 118 (1): 41–47. https://doi.org/10.1115/1.2889633.
Wang, S.-G., L. S. Shieh, and J. W. Sunkel. 1995a. “Robust optimal pole-clustering in a vertical strip and disturbance rejection for Lagrange’s systems.” Int. J. Dyn. Control 5 (Jul): 295–312. https://doi.org/10.1007/BF01968679.
Wang, S.-G., L. S. Shieh, and J. W. Sunkel. 1995b. “Robust optimal pole-placement in a vertical strip and disturbance rejection.” Int. J. Syst. Sci. 26 (Oct): 1839–1853. https://doi.org/10.1080/00207729508929140.
Wang, S.-G., L. S. Shieh, and J. W. Sunkel. 1998. “Observer based controller for robust pole clustering in a vertical strip and disturbance rejection in structured uncertain systems.” Int. J. Robust Nonlinear Control 8 (Oct): 1073–1084. https://doi.org/10.1002/(SICI)1099-1239(1998100)8:12%3C1073::AID-RNC366%3E3.0.CO;2-8.
Watakabe, M., M. Tohdo, O. Chiba, N. Izumi, H. Ebisawa, and T. Fujita. 2001. “Response control performance of a hybrid mass damper applied to a tall building.” Earthquake Eng. Struct. Dyn. 30 (11): 1655–1676. https://doi.org/10.1002/eqe.86.
Weber, F., C. Boston, and M. Ma´slanka. 2011. “An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an MR damper.” Smart Mater. Struct. 20 (Dec): 015012. https://doi.org/10.1088/0964-1726/20/1/015012.
Weber, F., P. Huber, S. Spensberger, J. Distl, and C. Braun. 2019. “Reduced-mass adaptive TMD for tall buildings damping.” Int. J. High-Rise Build. 8 (2): 117–123. https://doi.org/10.21022/IJHRB.2019.8.2.117.
Whittaker, A. S., V. V. Bertero, C. L. Thompson, and L. I. Alonso. 1991. “Seismic testing of steel plate energy dissipation systems.” Earthquake Spectra 7 (4): 563–604. https://doi.org/10.1193/1.1585644.
Wilson, J., and W. Gravelle. 1991. “Modeling of a cable-stayed bridge for dynamic analysis.” Earthquake Eng. Struct. Dyn. 20 (8): 707–721. https://doi.org/10.1002/eqe.4290200802.
Wirsching, P. H., and G. W. Campbell. 1974. “Minimal structural response under random excitation using the vibration absorber.” Earthquake Eng. Struct. Dyn. 2 (4): 303–312. https://doi.org/10.1002/eqe.4290020402.
Wong, K. K. F., and Y. L. Chee. 2004. “Energy dissipation of tuned mass dampers during earthquake excitations.” Struct. Des. Tall Special Build. 13 (2): 105–121. https://doi.org/10.1002/tal.244.
Wongprasert, N., and M. D. Symans. 2005. “Experimental evaluation of adaptive elastomeric base-isolated structures using variable-orifice fluid dampers.” J. Struct. Eng. 131 (6): 867–877. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:6(867).
Wu, J., and G. Chen. 2000. “Optimization of multiple tuned mass dampers for seismic response reduction.” In Proc., American Control Conf., 519–523. New York: IEEE.
Wu, J. C., C. H. Chang, and Y. Y. Lin. 2009. “Optimal design of non-uniform tuned liquid column dampers in horizontal motion.” J. Sound Vib. 326 (1–2): 104–122. https://doi.org/10.1016/j.jsv.2009.04.027.
Wu, W., X. Chen, and Y. Shan. 2014. “Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness.” J. Sound Vib. 333 (13): 2958–2970. https://doi.org/10.1016/j.jsv.2014.02.009.
Xiang, J., and M. Liang. 2012. “Wavelet-based detection of beam cracks using modal shape and frequency measurements.” Comput.-Aided Civ. Infrastruct. Eng. 27 (6): 439–454. https://doi.org/10.1111/j.1467-8667.2012.00760.x.
Xiang, P., and A. Nishitani. 2014a. “Optimally design for more effective tuned mass damper and its application to base-isolated buildings.” Struct. Control Health Monit. 21 (1): 98–114. https://doi.org/10.1002/stc.1556.
Xiang, P., and A. Nishitani. 2014b. “Seismic vibration control of building structures with multiple tuned mass damper floors integrated.” Earthquake Eng. Struct. Dyn. 43 (6): 909–925. https://doi.org/10.1002/eqe.2379.
Xiong, Y. P., J. T. Xing, W. G. Price, and X. P. Wang. 2000. “Hybrid active and passive control of vibratory power flow in flexible isolation system.” Shock Vib. 7 (3): 139–148. https://doi.org/10.1155/2000/412747.
Xu, K., and T. Igusa. 1991. “Dynamic characteristics of non-classically damped structures.” Earthquake Eng. Struct. Dyn. 20 (12): 1127–1144. https://doi.org/10.1002/eqe.4290201204.
Xu, K., and T. Igusa. 1992. “Dynamic characteristics of multiple substructures with closely spaced frequencies.” Earthquake Eng. Struct. Dyn. 21 (12): 1059–1070. https://doi.org/10.1002/eqe.4290211203.
Xu, Y. L., K. C. S. Kwok, and B. Samali. 1992a. “Torsion response and vibration suppression of wind-excited buildings.” J. Wind Eng. Ind. Aerodyn. 43 (1–3): 1997–2008. https://doi.org/10.1016/0167-6105(92)90623-I.
Xu, Y. L., B. Samali, and K. C. S. Kwok. 1992b. “Control of a long-wind response of structures by mass and liquid dampers.” J. Eng. Mech. 118 (1): 20–39. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:1(20).
Yalla, S. K., and A. Kareem. 2000. “Optimum absorber parameters for tuned liquid column dampers.” J. Struct. Eng. 126 (8): 906–915. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(906).
Yamazaki, S., N. Nagata, and H. Abiru. 1992. “Tuned active dampers installed in the Minato Mirai (MM) 21 Landmark Tower in Yokohama.” J. Wind Eng. Ind. Aerodyn. 43 (1–3): 1937–1948. https://doi.org/10.1016/0167-6105(92)90618-K.
Yan, G., and W. Wu. 2011. “Smart base isolation control adopted semi-active fuzzy strategy for seismic response of structure.” Adv. Mater. Res. 255 (May): 2515–2519. https://doi.org/10.4028/www.scientific.net/AMR.255-260.2515.
Yan, G., and L. L. Zhou. 2006. “Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers.” J. Sound Vib. 296 (1–2): 368–382. https://doi.org/10.1016/j.jsv.2006.03.011.
Yang, J., A. Danielianns, and S. Liu. 1991. “Aseismic hybrid control systems for building structures.” J. Eng. Mech. 117 (4): 836–853. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:4(836).
Yang, J. N., and A. K. Agrawal. 2002. “Semi-active hybrid control systems for nonlinear buildings against near-field earthquakes.” Eng. Struct. 24 (3): 271–280. https://doi.org/10.1016/S0141-0296(01)00094-3.
Yang, J. N., and S. J. Dyke. 2003. “Kobori Panel Discussion: Future perspectives on structural control.” In Proc., 3rd World Conf. on Structural Control, 279–286. New York: Wiley.
Yang, J. N., J.-H. Kim, and A. K. Agrawal. 2000. “Resetting semi active stiffness damper for seismic response control.” J. Struct. Eng. 126 (12): 1427–1433. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:12(1427).
Yang, J. N., S. Lin, and F. Jabbari. 2004. “H-based control strategies for civil engineering structures.” Struct. Control Health Monit. 11 (3): 223–237. https://doi.org/10.1002/stc.38.
Yang, J. N., J. C. Wu, K. Kawashima, and S. Unjoh. 1995. “Hybrid control of seismic-excited bridge structures.” Earthquake Eng. Struct. Dyn. 24 (11): 1437–1451. https://doi.org/10.1002/eqe.4290241103.
Yao, T. P. 1972. “Concept of structural control.” J. Struct. Div. 98 (7): 1567–1574. https://doi.org/10.1061/JSDEAG.0003280.
Yellin, J. M., and I. Y. Shen. 1996. “A self-sensing active constrained layer damping treatment for a Euler-Bernoulli beam.” Smart Mater. Struct. 5 (5): 628–637. https://doi.org/10.1088/0964-1726/5/5/011.
Yoshioka, H., J. C. Ramallo, and B. F. Spencer Jr. 2002. “‘Smart’ base isolation strategies employing magnetorheological dampers.” J. Eng. Mech. 128 (5): 540–551. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:5(540).
Yu, W., T. Suresh, and X. Li. 2014. “Stable PID vibration control of building structures.” In Vol. 19 of Proc., 19th World Congress-Int. Federation of Automatic Control, South Africa, 4760–4765. Laxenburg, Austria: International Federation of Automatic Control.
Zanardo, G., H. Hao, and C. Modena. 2002. “Seismic response of multi-span simply supported bridges to a spatially varying earthquake ground motion.” Earthquake Eng. Struct. Dyn. 31 (6): 1325–1345. https://doi.org/10.1002/eqe.166.
Zargar, H., K. L. Ryan, and J. D. Marshall. 2013. “Feasibility study of a gap damper to control seismic isolator displacements in extreme earthquakes.” Struct. Control Health Monit. 20 (Aug): 1159–1175. https://doi.org/10.1002/stc.1525.
Zelleke, D. H., and V. A. Matsagar. 2019. “Energy-based predictive algorithm for semi-active tuned mass dampers.” Struct. Des. Tall Special Build. 28 (12): e1626. https://doi.org/10.1002/tal.1626.
Zemp, R., J. C. de la Llera, and J. L. Almazan. 2011. “Tall building vibration control using a TM-MR damper assembly.” Earthquake Eng. Struct. Dyn. 40 (3): 339–354. https://doi.org/10.1002/eqe.1033.
Zhang, Y., and W. D. Iwan. 2002. “Protecting base-isolated structures from nearfield ground motion by tuned interaction damper.” J. Eng. Mech. 128 (3): 287–295. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:3(287).
Zhou, K., J. C. Doyle, and K. Glover. 1996. Robust and optimal control. Upper Saddle River, NJ: Prentice-Hall.
Zizouni, K., L. Fali, Y. Sadek, and I. K. Bousserhane. 2019. “Neural network control for earthquake structural vibration reduction using MRD.” Front. Struct. Civ. Eng. 13 (Oct): 1171–1182. https://doi.org/10.1007/s11709-019-0544-4.
Zuo, L., and S. A. Nayfeh. 2003. “Optimization of the individual stiffness and damping parameters in multiple-tuned-mass damper systems.” In Vol. 5052 of Proc., Smart Structures and Materials 2003: Damping and Isolation, 217–229. https://doi.org/10.1117/12.483798.
Zuo, L., and S. A. Nayfeh. 2004. “Minimax optimization of multi-degree-of-freedom tuned mass dampers.” J. Sound Vib. 272 (3–5): 893–908. https://doi.org/10.1016/S0022-460X(03)00500-5.
Zuo, L., and S. A. Nayfeh. 2005. “Optimization of the individual stiffness and damping parameters in multiple-tuned-mass-damper system.” J. Vib. Acoust. 127 (1): 77–83. https://doi.org/10.1115/1.1855929.

Information & Authors

Information

Published In

Go to Practice Periodical on Structural Design and Construction
Practice Periodical on Structural Design and Construction
Volume 27Issue 3August 2022

History

Published online: Apr 6, 2022
Published in print: Aug 1, 2022
Discussion open until: Sep 6, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Mohammad H. Stanikzai, S.M.ASCE [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Old Dominion Univ., 5115 Hampton Blvd., Norfolk, VA 23529. Email: [email protected]
Researcher, Dept. of Construction Management and Engineering, Faculty of Engineering Technology, Univ. of Twente (UTWENTE), Enschede 7522NB, Netherlands (corresponding author). ORCID: https://orcid.org/0000-0002-8231-9765. Email: [email protected]; [email protected]
Yunbyeong Chae [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Seoul National Univ., 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Response of Base-Isolated Building with Secondary System under Earthquakes and Pulse-Type Ground Motions, Practice Periodical on Structural Design and Construction, 10.1061/PPSCFX.SCENG-1504, 29, 4, (2024).
  • Reinforcement Learning for Integrated Structural Control and Health Monitoring, Practice Periodical on Structural Design and Construction, 10.1061/PPSCFX.SCENG-1455, 29, 3, (2024).
  • Effectiveness of Optimal Shared Multiple Tuned Mass Damper Inerters for Pounding Mitigation of Adjacent Buildings, Practice Periodical on Structural Design and Construction, 10.1061/(ASCE)SC.1943-5576.0000732, 28, 1, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share