State-of-the-Art Reviews
May 26, 2022

Structural Health Monitoring Techniques and Technologies for Large-Scale Structures: Challenges, Limitations, and Recommendations

Publication: Practice Periodical on Structural Design and Construction
Volume 27, Issue 3

Abstract

Engineers, building officials and authorities, developers, and other stakeholders have long recognized the significance of structural health monitoring (SHM) in civil infrastructure. With an increasing number of large structures and modern, complex design, the need for high-performance SHM systems is unprecedented. Structural performance assessment, damage detection, and continuous monitoring are among the current SHM applications. However, all SHM applications face challenges and limitations in several aspects. This paper presents a state-of-the-art review of such challenges and limitations, and sheds light on some future research needs and directions. The most widely used frameworks and their respective limitations are presented and discussed with a focus on real-life applications pertaining to large structures. Driven by many recent technological advancements, SHM systems are shifting away from conventional, contact-based sensors in favor of more efficient, non-contact-based sensors. This is not intended to be an exhaustive review, but rather a stepping-stone and pathway to a solid understanding of the SHM field and its current intricacies pertaining to large structures. Naturally, some of the highlighted issues can be extended to all types of structures.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

Acknowledgments

The work in this paper was supported, in part, by the Faculty Research Grant program (FRG19-M-E65) from the American University of Sharjah (AUS). This paper represents the opinions of the authors and does not mean to represent the position or opinions of AUS.

References

Abdelbarr, M., Y. L. Chen, M. R. Jahanshahi, S. F. Masri, W. M. Shen, and U. A. Qidwai. 2017. “3D dynamic displacement-field measurement for structural health monitoring using inexpensive RGB-D based sensor.” Smart Mater. Struct. 26 (12): 125016. https://doi.org/10.1088/1361-665X/aa9450.
Abdel Wahab, M. M., and G. De Roeck. 1999. “Damage detection in bridges using modal curvatures: Application to a real damage scenario.” J. Sound Vib. 226 (2): 217–235. https://doi.org/10.1006/jsvi.1999.2295.
Achenbach, J. D. 2009. “Structural health monitoring—What is the prescription?” Mech. Res. Commun. 36 (2): 137–142. https://doi.org/10.1016/j.mechrescom.2008.08.011.
Adewuyi, P., and Z. Wu. 2011. “Vibration-based damage localization in flexural structures using normalized modal macrostrain techniques from limited measurements.” Comput.-Aided Civ. Infrastruct. Eng. 26 (3): 154–172. https://doi.org/10.1111/j.1467-8667.2010.00682.x.
Adhikari, S. 2013. “Structural dynamic analysis with generalized damping models: identification.” In Vol. 9781848216 of Structural dynamic analysis with generalized damping models: Identification. London: Wiley-ISTE.
Akyildiz, I. F., W. Su, Y. Sankarasubramaniam, and E. Cayirci. 2002. “A survey on sensor networks.” IEEE Commun. Mag. 40 (8): 102–105. https://doi.org/10.1109/MCOM.2002.1024422.
Alavi, A. H., H. Hasni, N. Lajnef, and K. Chatti. 2016a. “Continuous health monitoring of pavement systems using smart sensing technology.” Constr. Build. Mater. 114 (Jul): 719–736. https://doi.org/10.1016/j.conbuildmat.2016.03.128.
Alavi, A. H., N. Lajnef, H. Hasni, K. Chatti, and F. Faridazar. 2016b. “Damage detection using self-powered wireless sensor data: An evolutionary approach.” Meas.: J. Int. Meas. Confederation 82 (Mar): 254–283. https://doi.org/10.1016/j.measurement.2015.12.020.
Alavi, A. H., N. Lajnef, H. Hasni, K. Chatti, and F. Faridazar. 2016c. “An intelligent structural damage detection approach based on self-powered wireless sensor data.” Autom. Constr. 62 (Feb): 24–44. https://doi.org/10.1016/j.autcon.2015.10.001.
Alazzawi, O., and D. Wang. 2021. “Damage identification using the PZT impedance signals and residual learning algorithm.” J. Civ. Struct. Health Monit. 11 (5): 1225–1238. https://doi.org/10.1007/s13349-021-00505-9.
Alessandroni, G., et al. 2014. “SmartRoadSense: Collaborative road surface condition monitoring.” In Proc., UBICOMM 2014—8th Int. Conf. on Mobile Ubiquitous Computing, Systems, Services and Technologies, 210–215. Rome: International Academy, Research and Industry Association.
AlHamaydeh, M. H., K. Wong, R. Fernandes, J. Seok, E. M. Abdel-Rahman, and S. El-Borgi. 2015. “Structural health monitoring using time-delay embedding and phase-space warping.” In Proc., COMPDYN 2015—5th ECCOMAS Thematic Conf. on Computational Methods in Structural Dynamics and Earthquake Engineering, 2568–2575. Athens, Greece: National Technical Univ. of Athens.
Alonso, L., J. Chen, J. Barbarán, M. Díaz, L. Llopis, and B. Rubio. 2018. “Middleware and communication technologies for structural health monitoring of critical infrastructures: A survey.” Comput. Stand. Interfaces 56 (Mar): 83–100. https://doi.org/10.1016/j.csi.2017.09.007.
Anjomshoaa, A., D. Rennings, F. Duarte, T. J. Matarazzo, P. Desouza, and C. Ratti. 2018. “City scanner: Building and scheduling a mobile sensing platform for smart city services.” IEEE Internet Things J. 5 (6): 4567–4579. https://doi.org/10.1109/JIOT.2018.2839058.
Antunes, P., H. Lima, H. Varum, and P. André. 2012. “Optical fiber sensors for static and dynamic health monitoring of civil engineering infrastructures: Abode wall case study.” Measurement 45 (7): 1695–1705. https://doi.org/10.1016/j.measurement.2012.04.018.
Au, F. 2004. “Parameter identification of vehicles moving on continuous bridges.” J. Sound Vib. 269 (1–2): 91–111. https://doi.org/10.1016/S0022-460X(03)00005-1.
Avsar, Ö., D. Akca, and O. Altan. 2014. “Photogrammetric deformation monitoring of the second bosphorus bridge in Istanbul.” ISPRS—Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-5 (5): 71–76. https://doi.org/10.5194/isprsarchives-XL-5-71-2014.
Bachiri, T., A. Khamlichi, and M. Bezzazi. 2018. “Bridge deck condition assessment by using GPR: A review.” In Vol. 191 of Proc., MATEC Web of Conf., 00004. Paris: EDP Sciences.
Bado, M. F., and J. R. Casas. 2021. “A review of recent distributed optical fiber sensors applications for civil engineering structural health monitoring.” Sensors 21 (5): 1818. https://doi.org/10.3390/s21051818.
Bakhshi, A., and H. A. Tehrani. 2017. “Structural health monitoring in multi-story frames based on signal processing and RBF neural networks.” In Proc., 16th World Conf. on Earthquake Engineering. Chile, Valdivia: Chilean Association on Seismology and Earthquake Engineering.
Balageas, D. L., ed. 2002. “Structural health monitoring 2004.” In Proc., 1st Int. European Workshop on Structural Health Monitoring. Lancaster, PA: DEStech Publications.
Bao, Y., Z. Chen, S. Wei, Y. Xu, Z. Tang, and H. Li. 2019. “The state of the art of data science and engineering in structural health monitoring.” Engineering 5 (2): 234–242. https://doi.org/10.1016/j.eng.2018.11.027.
Bartram, G., and S. Mahadevan. 2014. “Integration of heterogeneous information in SHM models.” Struct. Control Health Monit. 21 (3): 403–422. https://doi.org/10.1002/stc.1572.
Berrocal, C. G., I. Fernandez, M. F. Bado, J. R. Casas, and R. Rempling. 2021. “Assessment and visualization of performance indicators of reinforced concrete beams by distributed optical fibre sensing.” Struct. Health Monit. 20 (6): 3309–3326. https://doi.org/10.1177/1475921720984431.
Bertolesi, E., M. Buitrago, J. M. Adam, and P. A. Calderón. 2021. “Fatigue assessment of steel riveted railway bridges: Full-scale tests and analytical approach.” J. Constr. Steel Res. 182 (Jul): 106664. https://doi.org/10.1016/j.jcsr.2021.106664.
Besnard, G., F. Hild, and S. Roux. 2006. “‘Finite-element’ displacement fields analysis from digital images: Application to Portevin-Le Châtelier bands.” Exp. Mech. 46 (6): 789–803. https://doi.org/10.1007/s11340-006-9824-8.
Biggs, J. M. 1965. Introduction to structural dynamics. New York: McGraw-Hill College.
Boller, C., and W. J. Staszewski, eds. 2004. “Structural health monitoring 2004.” In Proc., 2nd Int. European Workshop on Structural Health Monitoring. Munich, Germany: Univ. of Sheffield.
Botta, F., and G. Cerri. 2007. “Shock response spectrum in plates under impulse loads.” J. Sound Vib. 308 (3–5): 563–578. https://doi.org/10.1016/j.jsv.2007.04.035.
Brewick, P. T., M. Abdelbarr, A. Derkevorkian, A. R. Kolaini, S. F. Masri, and J. S. Pei. 2018. “Fusing state-space and data-driven strategies for computational shock response prediction.” AIAA J. 56 (6): 2308–2321. https://doi.org/10.2514/1.J056446.
Brincker, R., and C. Ventura. 2015. Introduction to operational modal analysis. West Sussex, UK: Wiley.
Brownjohn, J., D. Hester, Y. Xu, J. Bassitt, and K. Koo. 2016. “Viability of optical tracking systems for monitoring deformations of a long span bridge.” In Proc., EACS 2016—6th European Conf. on Structural Control. Pavia, Italy: European Association for the Control of Structures.
Bu, J. Q., S. S. Law, and X. Q. Zhu. 2006. “Innovative bridge condition assessment from dynamic response of a passing vehicle.” J. Eng. Mech. 132 (12): 1372–1379. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:12(1372).
Buitrago, M., E. Bertolesi, P. A. Calderón, and J. M. Adam. 2020. “Robustness of steel truss bridges: Laboratory testing of a full-scale 21-metre bridge span.” Structures 29 (Feb): 691–700. https://doi.org/10.1016/j.istruc.2020.12.005.
Caicedo, J. M. 2011. “Practical guidelines for the natural excitation technique (NExT) and the eigensystem realization algorithm (ERA) for modal identification using ambient vibration.” Exp. Tech. 35 (4): 52–58. https://doi.org/10.1111/j.1747-1567.2010.00643.x.
Cantero, D., P. McGetrick, C. W. Kim, and E. OBrien. 2019. “Experimental monitoring of bridge frequency evolution during the passage of vehicles with different suspension properties.” Eng. Struct. 187 (May): 209–219. https://doi.org/10.1016/j.engstruct.2019.02.065.
Çelebi, M. 2000. “GPS in dynamic monitoring of long-period structures.” Soil Dyn. Earthquake Eng. 20 (5–8): 477–483. https://doi.org/10.1016/S0267-7261(00)00094-4.
Cha, Y. J., Y. Kim, and T. You. 2018. “Advanced sensing and structural health monitoring.” J. Sens. 2018 (Jan): 7286069. https://doi.org/10.1155/2018/7286069.
Chan, W.-S., Y.-L. Xu, X.-L. Ding, Y.-L. Xiong, and W.-J. Dai. 2006. “Assessment of dynamic measurement accuracy of GPS in three directions.” J. Surv. Eng. 132 (3): 108–117. https://doi.org/10.1061/(ASCE)0733-9453(2006)132:3(108).
Chance, J., J. Chance, G. R. Tomlinson, and K. Worden. 1994. “A simplified approach to the numerical and experimental modeling of the dynamics of a cracked beam.” In Proc., 12th Int. Modal Analysis Conf., 778–785. Bethel, CT: Society for Experimental Mechanics.
Chang, F. K., ed. 1997. “Structural health monitoring: Current status and perspectives.” In Proc., Int. Workshop on Structural Health Monitoring. Stanford, CA: Stanford Univ.
Chang, F. K., ed. 2007. “Structural health monitoring 2007: Quantification, validation, and implementation.” In Proc., 6th Int. Workshop on Structural Health Monitoring. Lancaster, PA: DEStech Publications.
Chang, K. C., C. W. Kim, and S. Borjigin. 2014. “Variability in bridge frequency induced by a parked vehicle.” Smart Struct. Syst. 13 (5): 755–773. https://doi.org/10.12989/sss.2014.13.5.755.
Chang, K. C., F. B. Wu, and Y. B. Yang. 2010. “Effect of road surface roughness on indirect approach for measuring bridge frequencies from a passing vehicle.” Interact. Multiscale Mech. 3 (4): 1–11. https://doi.org/10.12989/imm.2010.3.4.299.
Chatzi, E. N., and A. W. Smyth. 2009. “The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing.” Struct. Control Health Monit. 16 (1): 99–123. https://doi.org/10.1002/stc.290.
Chen, B., and W. Liu. 2010. “Mobile agent computing paradigm for building a flexible structural health monitoring sensor network.” Comput.-Aided Civ. Infrastruct. Eng. 25 (7): 504–516. https://doi.org/10.1111/j.1467-8667.2010.00656.x.
Chen, B., and S. Nagarajaiah. 2013. “Observer-based structural damage detection using genetic algorithm.” Struct. Control Health Monit. 20 (4): 520–531. https://doi.org/10.1002/stc.512.
Chen, J., M. Díaz, L. Llopis, B. Rubio, and J. M. Troya. 2011. “A survey on quality of service support in wireless sensor and actor networks: Requirements and challenges in the context of critical infrastructure protection.” J. Netw. Comput. Appl. 34 (4): 1225–1239. https://doi.org/10.1016/j.jnca.2011.01.008.
Chen, J. G., N. Wadhwa, Y. Jin Cha, F. Durand, W. T. Freeman, and O. Buyukozturk. 2015. “Modal identification of simple structures with high-speed video using motion magnification.” J. Sound Vib. 345 (Jun): 58–71. https://doi.org/10.1016/j.jsv.2015.01.024.
Chen, Y. L., M. Abdelbarr, M. R. Jahanshahi, and S. F. Masri. 2017. “Color and depth data fusion using an RGB-D sensor for inexpensive and contactless dynamic displacement-field measurement.” Struct. Control Health Monit. 24 (11): 1–14. https://doi.org/10.1002/stc.2000.
Chen, Y. L., M. R. Jahanshahi, P. Manjunatha, W. Gan, M. Abdelbarr, S. F. Masri, B. Becerik-Gerber, and J. P. Caffrey. 2016. “Inexpensive multimodal sensor fusion system for autonomous data acquisition of road surface conditions.” IEEE Sens. J. 16 (21): 7731–7743. https://doi.org/10.1109/JSEN.2016.2602871.
Chen, Z., B. Kim, and D.-E. Lee. 2021. “Aerodynamic characteristics and lateral displacements of a set of two buildings in a linked tall building system.” Sensors 21 (12): 4046. https://doi.org/10.3390/s21124046.
Chen, Z.-W., S. Zhu, Y.-L. Xu, Q. Li, and Q.-L. Cai. 2014. “Damage detection in long suspension bridges using stress influence lines.” J. Bridge Eng. 20 (3): 05014013. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000681.
Chintalapudi, K., T. Fu, J. Paek, N. Kothari, S. Rangwala, J. Caffrey, R. Govindan, E. Johnson, and S. Masri. 2006. “Monitoring civil structures with a wireless sensor network.” IEEE Internet Comput. 10 (2): 26–34. https://doi.org/10.1109/MIC.2006.38.
Cho, S., R. K. Giles, and B. F. Spencer. 2015. “System identification of a historic swing truss bridge using a wireless sensor network employing orientation correction.” Struct. Control Health Monit. 22 (2): 255–272. https://doi.org/10.1002/stc.1672.
Cho, S., and B. F. Spencer. 2015. “Sensor attitude correction of wireless sensor network for acceleration-based monitoring of civil structures.” Comput.-Aided Civ. Infrastruct. Eng. 30 (11): 859–871. https://doi.org/10.1111/mice.12147.
Chopra, A. K. 2007. Dynamics of structures. 3rd ed. Englewood Cliffs, NJ: Prentice Hall/Pearson Education.
Clinton, J. F., S. Case Bradford, T. H. Heaton, and J. Favela. 2006. “The observed wander of the natural frequencies in a structure.” Bull. Seismol. Soc. Am. 96 (1): 237–257. https://doi.org/10.1785/0120050052.
Conte, J. P., R. Astroza, G. Benzoni, G. Feltrin, K. J. Loh, and B. Moaveni. 2017. Experimental vibration analysis for civil structures: Testing, sensing, monitoring, and control. Cham, Switzerland: Springer International.
Cross, E. J., G. Manson, K. Worden, and S. G. Pierce. 2012. “Features for damage detection with insensitivity to environmental and operational variations.” Proc. R. Soc. A: Math. Phys. Eng. Sci. 468 (2148): 4098–4122. https://doi.org/10.1098/rspa.2012.0031.
CTBUH (Council on Tall buildings and Urban Habitat). 2013. CTBUH criteria for defining and measuring tall buildings. Chicago: CTBUH.
Dabous, S. A., and S. Feroz. 2020. “Automation in construction condition monitoring of bridges with non-contact testing technologies.” Autom. Constr. 116 (Apr): 103224. https://doi.org/10.1016/j.autcon.2020.103224.
Dai, W., J. Zhu, X. Ding, and Y. Chen. 2007. “Single epoch ambiguity resolution in structure monitoring using GPS.” Geomatics Inf. Sci. Wuhan Univ. 32 (3): 62.
Dai, W. J. 2007. “A study of data processing for precise dynamic deformation monitoring using GPS.” Ph.D. thesis, Dept. of Geodesy and Survey Engineering, Central South Univ.
Dantu, K., M. Rahimi, H. Shah, S. Babel, A. Dhariwal, and G. S. Sukhatme. 2005. “Robomote: enabling mobility in sensor networks.” In Proc., 4th Int. Symp. on Information Processing in Sensor Networks, IPSN, 404–409. Piscataway, NJ: IEEE.
Dashti, S., J. D. Bray, J. Reilly, S. Glaser, A. Bayen, and E. Mari. 2014. “Evaluating the reliability of phones as seismic monitoring instruments.” Earthquake Spectra 30 (2): 721–742. https://doi.org/10.1193/091711EQS229M.
D’Emilia, G., L. Razzè, and E. Zappa. 2013. “Uncertainty analysis of high frequency image-based vibration measurements.” Meas. J. Int. Meas. Confederation 46 (8): 2630–2637. https://doi.org/10.1016/j.measurement.2013.04.075.
Diamanti, N., and A. P. Annan. 2017. “Air-launched and ground-coupled GPR data.” In Proc., 2017 11th European Conf. on Antennas and Propagation, EUCAP 2017, 1694–1698. New York: IEEE.
Doebling, S. W., C. R. Farrar, M. B. Prime, and D. W. Shevitz. 1996. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review. Washington, DC: USDOE.
Dong, C.-Z., and F. N. Catbas. 2021. “A review of computer vision-based structural health monitoring at local and global levels.” Struct. Health Monit. 20 (2): 692–743. https://doi.org/10.1177/1475921720935585.
Douka, E., S. Loutridis, and A. Trochidis. 2003. “Crack identification in beams using wavelet analysis.” Int. J. Solids Struct. 40 (13–14): 3557–3569. https://doi.org/10.1016/S0020-7683(03)00147-1.
Duda, R. O., P. E. Hart, and D. G. Stork. 2001. Pattern classification. New York: Wiley Interscience.
Duvnjak, I., D. Damjanović, M. Bartolac, and A. Skender. 2021. “Mode shape-based damage detection method (MSDI): Experimental validation.” Appl. Sci. (Switzerland) 11 (10): 1–14. https://doi.org/10.3390/app11104589.
Elias, S., and V. Matsagar. 2018. “Wind response control of tall buildings with a tuned mass damper.” J. Build. Eng. 15 (Jan): 51–60. https://doi.org/10.1016/J.JOBE.2017.11.005.
Elkordy, M. F., K. C. Chang, and G. C. Lee. 1994. “A structural damage neural network monitoring system.” Comput.-Aided Civ. Infrastruct. Eng. 9 (2): 83–96. https://doi.org/10.1111/j.1467-8667.1994.tb00364.x.
Elnabwy, M. T., M. R. Kaloop, and E. Elbeltagi. 2013. “Talkha steel highway bridge monitoring and movement identification using RTK-GPS technique.” Meas.: J. Int. Meas. Confederation 46 (10): 4282–4292. https://doi.org/10.1016/j.measurement.2013.08.014.
El-Sinawi, A. H., M. H. AlHamaydeh, and A. A. Jhemi. 2013. “Optimal control of magnetorheological fluid dampers for seismic isolation of structures.” Math. Probl. Eng. 2013 (Jan): 1–7. https://doi.org/10.1155/2013/251935.
Erdogan, Y. S., M. Gul, F. N. Catbas, and P. G. Bakir. 2014. “Investigation of uncertainty changes in model outputs for finite-element model updating using structural health monitoring data.” J. Struct. Eng. 140 (11): 04014078. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001002.
Erol, B. 2010. “Evaluation of high-precision sensors in structural monitoring.” Sensors 10 (12): 10803–10827. https://doi.org/10.3390/s101210803.
Eshkevari, S. S., S. N. Pakzad, M. Takáč3, and T. J. Matarazzo. 2020. “Modal identification of bridges using mobile sensors with sparse vibration data.” J. Eng. Mech. 146 (4): 1–18. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001733.
Farrar, C. R., and S. W. Doebling. 1997. Lessons learned from applications of vibration-based damage identification methods to a large bridge structure. Washington, DC: US Dept. of Energy.
Farrar, C. R., and G. H. James. 1997. “System identification from ambient vibration measurements on a bridge.” J. Sound Vib. 205 (1): 1–18. https://doi.org/10.1006/jsvi.1997.0977.
Farrar, C. R., and D. A. Jauregui. 1998. “Comparative study of damage identification algorithms applied to a bridge: II. Numerical study.” Smart Mater. Struct. 7 (5): 720–731. https://doi.org/10.1088/0964-1726/7/5/014.
Farrar, C. R., and K. Worden. 2007. “An introduction to structural health monitoring.” Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 365 (1851): 303–315. https://doi.org/10.1098/rsta.2006.1928.
Feng, D., and M. Q. Feng. 2015. “Model updating of railway bridge using in situ dynamic displacement measurement under trainloads.” J. Bridge Eng. 20 (12): 04015019. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000765.
Feng, D., and M. Q. Feng. 2016a. “Output-only damage detection using vehicle-induced displacement response and mode shape curvature index.” Struct. Control Health Monit. 23 (8): 1088–1107. https://doi.org/10.1002/stc.1829.
Feng, D., and M. Q. Feng. 2016b. “Vision-based multipoint displacement measurement for structural health monitoring.” Struct. Control Health Monit. 23 (5): 876–890. https://doi.org/10.1002/stc.1819.
Feng, D., and M. Q. Feng. 2017. “Experimental validation of cost-effective vision-based structural health monitoring.” Mech. Syst. Sig. Process. 88 (May): 199–211. https://doi.org/10.1016/j.ymssp.2016.11.021.
Feng, D., and M. Q. Feng. 2018. “Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection—A review.” Eng. Struct. 156 (Dec): 105–117. https://doi.org/10.1016/j.engstruct.2017.11.018.
Ferrari, R., F. Pioldi, E. Rizzi, C. Gentile, E. N. Chatzi, E. Serantoni, and A. Wieser. 2016. “Fusion of wireless and non-contact technologies for the dynamic testing of a historic RC bridge.” Meas. Sci. Technol. 27 (12): 124014. https://doi.org/10.1088/0957-0233/27/12/124014.
Frangopol, D., and Y. Tsompanakis. 2014. Maintenance and safety of aging infrastructure: Structures and infrastructures book series. 10th ed. Boca Raton, FL: CRC Press.
Friswell, M. I., and S. Adhikari. 2000. “Derivatives of complex eigenvectors using Nelson’s method.” AIAA J. 38 (12): 2355–2357. https://doi.org/10.2514/2.907.
Friswell, M. I., D. J. Inman, and D. F. Pilkey. 1998. “Direct updating of damping and stiffness matrices.” AIAA J. 36 (3): 491–493. https://doi.org/10.2514/2.396.
Frýba, L., and M. Pirner. 2001. “Load tests and modal analysis of bridges.” Eng. Struct. 23 (1): 102–109. https://doi.org/10.1016/S0141-0296(00)00026-2.
Garg, P., F. Moreu, A. Ozdagli, M. R. Taha, and D. Mascareñas. 2019. “Noncontact dynamic displacement measurement of structures using a moving laser Doppler vibrometer.” J. Bridge Eng. 24 (9): 04019089. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001472.
Giurgiutiu, V. 2008. Structural health monitoring with piezoelectric wafer active sensors. London: Academic Press.
Glisic, B., M. T. Yarnold, F. L. Moon, and A. Emin Aktan. 2014. “Advanced visualization and accessibility to heterogeneous monitoring data.” Comput.-Aided Civ. Infrastruct. Eng. 29 (5): 382–398. https://doi.org/10.1111/mice.12060.
González, A., E. J. Obrien, and P. J. McGetrick. 2012. “Identification of damping in a bridge using a moving instrumented vehicle.” J. Sound Vib. 331 (18): 4115–4131. https://doi.org/10.1016/j.jsv.2012.04.019.
Guechaichia, A., and I. Trendafilova. 2011. “A simple method for enhanced vibration-based structural health monitoring.” J. Phys. Conf. Ser. 305 (1): 012073. https://doi.org/10.1088/1742-6596/305/1/012073.
Güemes, A., ed. 2006. “Structural health monitoring 2006.” In Proc., 3rd Int. European Workshop on Structural Health Monitoring, 37. Lancaster, PA: DEStech Publications.
Guizzo, E. 2010. “Japanese snake robot goes where humans can’t.” Accessed May 9, 2020. https://spectrum.ieee.org/japanese-snake-robot-goes-where-humans-cant.
Guo, W. H., and Y. L. Xu. 2001. “Fully computerized approach to study cable-stayed bridge–vehicle interaction.” J. Sound Vib. 248 (4): 745–761. https://doi.org/10.1006/jsvi.2001.3828.
Gurney, K. R., et al. 2015. “Climate change: Track urban emissions on a human scale.” Nature 525 (7568): 179–181. https://doi.org/10.1038/525179a.
Handayani, H. H., and M. Taufik. 2015. “Preliminary study of bridge deformation monitoring using GPS and CRP (case study: Suramadu Bridge).” Procedia Environ. Sci. 24 (Jan): 266–276. https://doi.org/10.1016/j.proenv.2015.03.035.
Hasni, H., A. H. Alavi, P. Jiao, and N. Lajnef. 2017a. “Detection of fatigue cracking in steel bridge girders: A support vector machine approach.” Arch. Civ. Mech. Eng. 17 (3): 609–622. https://doi.org/10.1016/j.acme.2016.11.005.
Hasni, H., A. H. Alavi, N. Lajnef, M. Abdelbarr, S. F. Masri, and S. Chakrabartty. 2017b. “Self-powered piezo-floating-gate sensors for health monitoring of steel plates.” Eng. Struct. 148 (Oct): 584–601. https://doi.org/10.1016/j.engstruct.2017.06.063.
Hasrizam, C. M., and N. Fawazi. 2017. “Damage identification based on curvature mode shape using cubic polynomial regression and Chebyshev filters.” IOP Conf. Ser. Mater. Sci. Eng. 271 (1): 012091. https://doi.org/10.1088/1757-899X/271/1/012091.
Hattab, O., M. Chaari, M. A. Franchek, and T. Wassar. 2019. “An adaptive modeling approach to structural health monitoring of multistory buildings.” J. Sound Vib. 440 (Feb): 239–255. https://doi.org/10.1016/j.jsv.2018.10.019.
Hernandez, E. M., and G. May. 2013. “Dissipated energy ratio as a feature for earthquake-induced damage detection of instrumented structures.” J. Eng. Mech. 139 (11): 1521–1529. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000534.
Hoskere, V., J.-W. Park, H. Yoon, and B. F. Spencer Jr. 2019. “Vision-based modal survey of civil infrastructure using unmanned aerial vehicles.” J. Struct. Eng. (United States) 145 (7): 1–14. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002321.
Hsu, T. Y., and C. H. Loh. 2010. “Damage detection accommodating nonlinear environmental effects by nonlinear principal component analysis.” Struct. Control Health Monit. 17 (3): 338–354. https://doi.org/10.1002/stc.320.
Hu, R., Y. Xu, X. Lu, C. Zhang, Q. Zhang, and J. Ding. 2018. “Integrated multi-type sensor placement and response reconstruction method for high-rise buildings under unknown seismic loading.” Struct. Des. Tall Special Build. 27 (6): e1453. https://doi.org/10.1002/tal.1453.
Hu, X., B. Wang, and H. Ji. 2013. “A wireless sensor network-based structural health monitoring system for highway bridges.” Comput.-Aided Civ. Infrastruct. Eng. 28 (3): 193–209. https://doi.org/10.1111/j.1467-8667.2012.00781.x.
Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Snin, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu. 1998. “The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis.” Proc. R. Soc. A: Math. Phys. Eng. Sci. 454 (1971): 903–995. https://doi.org/10.1098/rspa.1998.0193.
Hwang, J., and A. Duran. 2016. “Stochastic shock response spectrum decomposition method based on probabilistic definitions of temporal peak acceleration, spectral energy, and phase lag distributions of mechanical impact pyrotechnic shock test data.” Mech. Syst. Signal Process. 76–77: 424–440. https://doi.org/10.1016/j.ymssp.2016.02.005.
Jahanshahi, M. R., W. M. Shen, T. G. Mondal, M. Abdelbarr, S. F. Masri, and U. A. Qidwai. 2017. “Reconfigurable swarm robots for structural health monitoring: A brief review.” Int. J. Intell. Rob. Appl. 1 (3): 287–305. https://doi.org/10.1007/s41315-017-0024-8.
Jayalakshmi, V., and A. R. M. Rao. 2017. “Simultaneous identification of damage and input dynamic force on the structure for structural health monitoring.” Struct. Multidiscip. Optim. 55 (6): 2211–2238. https://doi.org/10.1007/s00158-016-1637-5.
Jayanthan, M., and V. Srinivas. 2015. “Structural damage identification based on finite element model updating.” J. Mech. Eng. Autom. 5 (3B): 59–63. https://doi.org/10.5923/c.jmea.201502.12.
Jerri, A. J. 1977. “The Shannon sampling theorem—Its various extensions and applications: A tutorial review.” Proc. IEEE 65 (11): 1565–1596. https://doi.org/10.1109/PROC.1977.10771.
Kadambi, A., A. Bhandari, and R. Raskar. 2014. “3D depth cameras in vision: Benefits and limitations of the hardware computer vision and machine learning with RGB-D sensors.” In Computer vision and machine learning with RGB-D sensors, 3–26. Cham, Switzerland: Springer.
Kaloop, M. R., E. Elbeltagi, J. Wan Hu, and A. Elrefai. 2017. “Recent advances of structures monitoring and evaluation using GPS-time series monitoring systems: A review.” ISPRS Int. J. Geo-Inf. 6 (12): 382. https://doi.org/10.3390/ijgi6120382.
Kaya, Y., and E. Safak. 2015. “Real-time analysis and interpretation of continuous data from structural health monitoring (SHM) systems.” Bull. Earthquake Eng. 13 (3): 917–934. https://doi.org/10.1007/s10518-014-9642-9.
Khan, A. Z., A. B. Stanbridge, and D. J. Ewins. 1999. “Detecting damage in vibrating structures with a scanning LDV.” Opt. Lasers Eng. 32 (6): 583–592. https://doi.org/10.1117/12.307730.
Kijewski-Correa, T., et al. 2006a. “Validating wind-induced response of tall buildings: Synopsis of the Chicago full-scale monitoring program.” J. Struct. Eng. 132 (10): 1509–1523. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:10(1509).
Kijewski-Correa, T., and A. Bartolini. 2018. “Flexible architectures for full-scale performance evaluation of tall buildings: Burj Khalifa and beyond.” Lect. Notes Civ. Eng. 5 (Jul):17–37. https://doi.org/10.1007/978-3-319-67443-8_2.
Kijewski-Correa, T., A. Kareem, and M. Kochly. 2006b. “Experimental verification and full-scale deployment of global positioning systems to monitor the dynamic response of tall buildings.” J. Struct. Eng. 132 (8): 1242–1253. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:8(1242).
Kim, C. W., M. Kawatani, and K. B. Kim. 2005. “Three-dimensional dynamic analysis for bridge–vehicle interaction with roadway roughness.” Comput. Struct. 83 (19–20): 1627–1645. https://doi.org/10.1016/j.compstruc.2004.12.004.
Kleywegt, A., and K. Sinha. 1994. Tools for bridge management data analysis. Washington, DC: Transportation Research Board.
Kotzias, B. 2004. “Shock simulation for truss coupled shell structures.” In Proc., 55th Int. Astronautical Congress, 1–13. Reston, VA: International Astronautical Federation.
Kotzias, B. 2005. “Projection method in structural dynamics in application to shock propagation simulation for truss coupled shell structures.” In Proc., European Conf. on Spacecraft Structures, 627–632. Noordwijk, Netherlands: Materials & Mechanical Testing.
Kotzias, B., and J. Albus. 2013. “Pyro-technique shocks in launch vehicles.” In Proc., 5th European Conf. for Aerospace Sciences, 1–12. Paris: EDP Sciences.
Kuang, C., Z. Yi, W. Dai, and F. Zeng. 2013. “Measuring wind-induced response characteristics of tall building based on GPS PPP method.” J. Cent. South Univ. (Sci. Technol.) 44 (11): 4588–4596.
Kullaa, J. 2001. “Elimination of environmental influences from damage-sensitive features in a structural health monitoring system. Structural health monitoring: Demands and challenges.” In Proc., 3rd Int. Workshop on Structural Health Monitoring, 742–749. Boca Raton, FL: CRC Press.
Kumar, R., A. Mukherjee, and V. P. Singh. 2017. “Community sensor network for monitoring road roughness using smartphones.” J. Comput. Civ. Eng. 31 (3): 04016059. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000624.
Kwasniewski, L., J. Wekezer, G. Roufa, H. Li, J. Ducher, and J. Malachowski. 2006. “Experimental evaluation of dynamic effects for a selected highway bridge.”J. Perform. Constr. Facil. 20 (3): 253–260. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:3(253).
Lam, H. F., K. V. Yuen, and J. L. Beck. 2006. “Structural health monitoring via measured Ritz vectors utilizing artificial neural networks.” Comput.-Aided Civ. Infrastruct. Eng. 21 (4): 232–241. https://doi.org/10.1111/j.1467-8667.2006.00431.x.
Lamarca, A., W. Brunette, D. Koizumi, M. Lease, S. B. Sigurdsson, K. Sikorski, D. Fox, and G. Borriello. 2002. “Making sensor networks practical with robots.” Lect. Notes Comput. Sci. 2414 (Aug): 152–166. https://doi.org/10.1007/3-540-45866-2_13.
Law, S. S., and X. Q. Zhu. 2005. “Bridge dynamic responses due to road surface roughness and braking of vehicle.” J. Sound Vib. 282 (3–5): 805–830. https://doi.org/10.1016/j.jsv.2004.03.032.
Lee, J. J., and M. Shinozuka. 2006. “Real-time displacement measurement of a flexible bridge using digital image processing techniques.” Exp. Mech. 46 (1): 105–114. https://doi.org/10.1007/s11340-006-6124-2.
Lewis, F. L., D. J. Cook, S. K. Dasm, and John Wiley. 2004. “Wireless sensor networks.” In Smart environment technologies, protocols and applications, 1–18. New York: Wiley.
Li, J., and J. Chen. 1999. “A statistical average algorithm for the dynamic compound inverse problem.” Comput. Mech. 30 (2): 88–95. https://doi.org/10.1007/s00466-002-0369-0.
Li, X., C. Rizos, Y. Tamura, L. Ge, A. Yoshida, and J. Cranenbroeck. 2010. “Fundamental bending mode and vibration monitoring with inclinometer and accelerometer on high-rise buildings subject to wind loads.” In Proc., 5th World Conf. on Structural Control and Monitoring, 160. Tokyo: Japan Society for the Promotion of Science.
Lienhart, W. 2013. “Challenges in the analysis of inhomogeneous structural monitoring data.” J. Civ. Struct. Health Monit. 3 (4): 247–255. https://doi.org/10.1007/s13349-013-0051-6.
Lih, S. S., and A. K. Mai. 1992. “Elastodpamic response of a unidirectional composite laminate to concentrated surface loads: Part II.” J. Appl. Mech. Trans. ASME 59 (4): 887–892. https://doi.org/10.1115/1.2894057.
Lin, C. W., and Y. B. Yang. 2005. “Use of a passing vehicle to scan the fundamental bridge frequencies: An experimental verification.” Eng. Struct. 27 (13): 1865–1878. https://doi.org/10.1016/j.engstruct.2005.06.016.
Liu, J., Z. Lu, and M. Yu. 2019. “Damage identification of non-classically damped shear building by sensitivity analysis of complex modal parameter.” J. Sound Vib. 438: 457–475. https://doi.org/10.1016/j.jsv.2018.09.022.
Lu, X. 2022. The structural design of tall and special buildings. New York: Wiley.
Lu, Y., A. J. Golrokh, and M. D. Aminul Islam. 2017. “Concrete pavement service condition assessment using infrared thermography.” Adv. Mater. Sci. Eng. 2017 (Jan): 1–8. https://doi.org/10.1155/2017/3829340.
Mai, A. K., and S. S. Lih. 1992. “Elastodynamic response of a unidirectional composite laminate to concentrated surface loads: Part I.” J. Appl. Mech. Trans. ASME 59 (4): 878–886. https://doi.org/10.1115/1.2894056.
Malekjafarian, A., and E. J. OBrien. 2014. “Identification of bridge mode shapes using short time frequency domain decomposition of the responses measured in a passing vehicle.” Eng. Struct. 81 (Dec): 386–397. https://doi.org/10.1016/j.engstruct.2014.10.007.
Malekjafarian, A., and E. J. OBrien. 2017. “On the use of a passing vehicle for the estimation of bridge mode shapes.” J. Sound Vib. 397 (Jun): 77–91. https://doi.org/10.1016/j.jsv.2017.02.051.
Malekloo, A., E. Ozer, M. AlHamaydeh, and M. Girolami. 2021. “Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights.” Struct. Health Monit. 16 (Aug): 1–50. https://doi.org/10.1177/14759217211036880.
Mallick, T., P. Pratim Das, and A. K. Majumdar. 2014. “Characterizations of noise in Kinect depth images: A review.” IEEE Sens. J. 14 (6): 1731–1740. https://doi.org/10.1109/JSEN.2014.2309987.
Martínez, C. A., O. Curadelli, and M. E. Compagnoni. 2013. “Optimal design of passive viscous damping systems for buildings under seismic excitation.” J. Constr. Steel Res. 90 (Nov): 253–264. https://doi.org/10.1016/J.JCSR.2013.08.005.
Marulanda, J., J. M. Caicedo, and P. Thomson. 2016. “Modal identification using mobile sensors under ambient excitation.” J. Comput. Civ. Eng. 31 (2): 04016051. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000619.
Marvasti, F. 2005. “Nonuniform sampling: Theory and practice [Book Review].” Computer 35 (9): 81. https://doi.org/10.1109/mc.2002.1033031.
Massaro, E., C. Ahn, C. Ratti, P. Santi, R. Stahlmann, A. Lamprecht, M. Roehder, and M. Huber. 2017. “The car as an ambient sensing platform.” Proc. IEEE 105 (1): 3–7. https://doi.org/10.1109/JPROC.2016.2634938.
Matarazzo, T. J., and S. N. Pakzad. 2016a. “Truncated physical model for dynamic sensor networks with applications in high-resolution mobile sensing and BIGDATA.” J. Eng. Mech. 142 (5): 04016019. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001022.
Matarazzo, T. J., and S. N. Pakzad. 2016b. “Structural identification for mobile sensing with missing observations.” J. Eng. Mech. 142 (5): 1–18. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001046.
Matarazzo, T. J., and S. N. Pakzad. 2017. “Scalable structural modal identification using dynamic sensor network data with STRIDEX.” Comput.-Aided Civ. Infrastruct. Eng. 33 (1): 4–20. https://doi.org/10.1111/mice.12298.
Matarazzo, T. J., P. Santi, S. N. Pakzad, K. Carter, C. Ratti, B. Moaveni, C. Osgood, and N. Jacob. 2018. “Crowdsensing framework for monitoring bridge vibrations using moving smartphones.” Proc. IEEE 106 (4): 577–593. https://doi.org/10.1109/JPROC.2018.2808759.
Maymon, S., and A. V. Oppenheim. 2011. “Sinc interpolation of nonuniform samples.” IEEE Trans. Signal Process. 59 (10): 4745–4758. https://doi.org/10.1109/TSP.2011.2160054.
Moncayo, H., J. Marulanda, and P. Thomson. 2010. “Identification and monitoring of modal parameters in aircraft structures using the natural excitation technique (NExT) combined with the eigensystem realization algorithm (ERA).” J. Aerosp. Eng. 23 (2): 99–104. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000011.
Mori, M., and S. Hirose. 2006. “Locomotion of 3D snake-like robots—Shifting and rolling control of active cord mechanism ACM-R3–.” J. Rob. Mechatron. 18 (5): 521–528. https://doi.org/10.20965/jrm.2006.p0521.
Mottershead, J., and M. Friswell. 1995. Finite element model updating in structural dynamics. Dordrecht, Netherlands: Springer.
Mottershead, J. E., and M. I. Friswell. 1993. “Model updating in structural dynamics: A survey.” J. Sound Vib. 167 (2): 347–375. https://doi.org/10.1006/jsvi.1993.1340.
Nickitopoulou, A., K. Protopsalti, and S. Stiros. 2006. “Monitoring dynamic and quasi-static deformations of large flexible engineering structures with GPS: Accuracy, limitations and promises.” Eng. Struct. 28 (10): 1471–1482. https://doi.org/10.1016/j.engstruct.2006.02.001.
Nozari, A., I. Behmanesh, S. Yousefianmoghadam, B. Moaveni, and A. Stavridis. 2017. “Effects of variability in ambient vibration data on model updating and damage identification of a 10-story building.” Eng. Struct. 151 (Nov): 540–553. https://doi.org/10.1016/j.engstruct.2017.08.044.
Obiechefu, C. B., and R. Kromanis. 2021. “Damage detection techniques for structural health monitoring of bridges from computer vision derived parameters.” Struct. Monit. Maint. 8 (1): 91–110.
Oldfi, P., D. Trabucco, and A. Wood, eds. 2014. Roadmap on the future research needs of tall buildings. Chicago: Council on Tall Buildings and Urban Habitat.
Ozer, E., D. Feng, and M. Q. Feng. 2017. “Hybrid motion sensing and experimental modal analysis using collocated smartphone camera and accelerometers.” Meas. Sci. Technol. 28 (10): aa82ac. https://doi.org/10.1088/1361-6501/aa82ac.
Ozer, E., and M. Q. Feng. 2016. “Synthesizing spatiotemporally sparse smartphone sensor data for bridge modal identification.” Smart Mater. Struct. 25 (8): 1–11. https://doi.org/10.1088/0964-1726/25/8/085007.
Ozer, E., and M. Q. Feng. 2017. “Direction-sensitive smart monitoring of structures using heterogeneous smartphone sensor data and coordinate system transformation.” Smart Mater. Struct. 26 (4): 045026. https://doi.org/10.1088/1361-665X/aa6298.
Özer, E., and S. Soyöz. 2015. “Vibration-based damage detection and seismic performance assessment of bridges.” Earthquake Spectra 31 (1): 137–157. https://doi.org/10.1193/080612EQS255M.
Pal, S. K., and J. S. Ali. 2014. “Damage detection of structures using power mode shape curvature index damage.” In Proc., Int. Conf. on Theoretical, Applied, Computational and Experimental Mechanics (ICTACEM-2014/452). Kharagpur, India: Indian Institute of Technology Kharagpur.
Pan, B., L. Tian, and X. Song. 2016. “Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation.” NDT and E Int. 79 (Apr): 73–80. https://doi.org/10.1016/j.ndteint.2015.12.006.
Pandey, A. K., M. Biswas, and M. M. Samman. 1991. “Damage detection from changes in curvature mode shapes.” J. Sound Vib. 145 (2): 321–332. https://doi.org/10.1016/0022-460X(91)90595-B.
Papagiannopoulos, G. A., and D. E. Beskos. 2009. “On a modal damping identification model for non-classically damped linear building structures subjected to earthquakes.” Soil Dyn. Earthquake Eng. 29 (3): 583–589. https://doi.org/10.1016/j.soildyn.2008.10.005.
Park, H. S., H. M. Lee, H. Adeli, and I. Lee. 2007. “A new approach for health monitoring of structures: Terrestrial laser scanning.” Comput.-Aided Civ. Infrastruct. Eng. 22 (1): 19–30. https://doi.org/10.1111/j.1467-8667.2006.00466.x.
Park, K. T., S. H. Kim, H. S. Park, and K. W. Lee. 2005. “The determination of bridge displacement using measured acceleration.” Eng. Struct. 27 (3): 371–378. https://doi.org/10.1016/j.engstruct.2004.10.013.
Poskus, E., G. W. Rodgers, C. Zhou, and J. G. Chase. 2018. “Damage identification for hysteretic structures using a mode decomposition method.” Comput.-Aided Civ. Infrastruct. Eng. 33 (2): 97–109. https://doi.org/10.1111/mice.12317.
Pozo, F., D. A. Tibaduiza, and Y. Vidal. 2021. “Sensors for structural health monitoring and condition monitoring.” Sensors 21 (5): 1558. https://doi.org/10.3390/s21051558.
Qadri, B. A., A. S. Kristensen, and M. D. Ulriksen. 2020. “Damage detection under temperature variability using closed-loop mode shapes.” Preprint, submitted December 23, 2020. https://engrxiv.org/preprint/view/1432.
Rahami, H., G. Ghodrati Amiri, H. Amini Tehrani, and M. Akhavat. 2018. “Structural health monitoring for multi-story shear frames based on signal processing approach.” Iran. J. Sci. Technol. Trans. Civ. Eng. 42 (3): 287–303. https://doi.org/10.1007/s40996-018-0096-1.
Rastin, Z., G. Ghodrati Amiri, and E. Darvishan. 2021. “Unsupervised structural damage detection technique based on a deep convolutional autoencoder.” Shock Vib. 2021 (Apr): 6658575. https://doi.org/10.1155/2021/6658575.
Reda Taha, M. M., A. Noureldin, J. L. Lucero, and T. J. Baca. 2006. “Wavelet transform for structural health monitoring: A compendium of uses and features.” Struct. Health Monit. 5 (3): 267–295. https://doi.org/10.1177/1475921706067741.
Ren, P., and Z. Zhou. 2021. “Two-step approach to processing raw strain monitoring data for damage detection of structures under operational conditions.” Sensors 21 (20): 6887. https://doi.org/10.3390/s21206887.
Ren, W. X., and H. B. Chen. 2010. “Finite element model updating in structural dynamics by using the response surface method.” Eng. Struct. 32 (8): 2455–2465. https://doi.org/10.1016/j.engstruct.2010.04.019.
Ren, W.-X., and G. De Roeck. 2002a. “Structural damage identification using modal data. I: Simulation verification.” J. Struct. Eng. 128 (1): 87–95. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(87).
Ren, W.-X., and G. De Roeck. 2002b. “Structural damage identification using modal data. II: Test verification.” J. Struct. Eng. 128 (1): 96–104. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(96).
Reynders, E., A. Teughels, and G. De Roeck. 2010. “Finite element model updating and structural damage identification using OMAX data.” Mech. Syst. Sig. Process. 24 (5): 1306–1323. https://doi.org/10.1016/j.ymssp.2010.03.014.
Ribeiro, D., R. Calçada, J. Ferreira, and T. Martins. 2014. “Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system.” Eng. Struct. 75 (Sep): 164–180. https://doi.org/10.1016/j.engstruct.2014.04.051.
Rocha, H., C. Semprimoschnig, and J. P. Nunes. 2021. “Sensors for process and structural health monitoring of aerospace composites: A review.” Eng. Struct. 237 (Jun): 112231. https://doi.org/10.1016/j.engstruct.2021.112231.
Roux, S., and F. Hild. 2006. “Stress intensity factor measurements from digital image correlation: Post-processing and integrated approaches.” Int. J. Fract. 140 (1): 141–157. https://doi.org/10.1007/s10704-006-6631-2.
Sadeghi Eshkevari, S., T. J. Matarazzo, and S. N. Pakzad. 2020. “Bridge modal identification using acceleration measurements within moving vehicles.” Mech. Syst. Sig. Process. 141 (Jul): 106733. https://doi.org/10.1016/j.ymssp.2020.106733.
Safak, E., and K. Hudnut. 2006. “Real-time structural monitoring and damage detection by acceleration and GPS sensors.” In Vol. 12 of Proc., 8th US National Conf. on Earthquake Engineering, 7137–7146. Oakland, CA: Earthquake Engineering Research Institute.
Şafak, E. 2005. “Detection of seismic damage in structures from continuous vibration records.” In Proc., 9th Int. Conf. on Structural Safety and Reliability (ICOSSAR), 19–23. Rotterdam, Netherlands: Millpress.
Salawu, O. S., and C. Williams. 1995. “Bridge assessment using forced-vibration testing.” J. Struct. Eng. 121 (2): 161–173. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(161).
Salawu, O. S., C. Williams, O. S. Salawu, and C. Williams. 1994. “Damage location using vibration mode shapes.” In Vol. 2251 of Proc., 12th Int. Modal Analysis, 933. Bethel, CT: Society for Experimental Mechanics.
Sankarasrinivasan, S., E. Balasubramanian, K. Karthik, U. Chandrasekar, and R. Gupta. 2015. “Health monitoring of civil structures with integrated UAV and image processing system.” Procedia Comput. Sci. 54 (Jan): 508–515. https://doi.org/10.1016/j.procs.2015.06.058.
Sarah, J., F. Hejazi, R. S. M. Rashid, and N. Ostovar. 2019. “A review of dynamic analysis in frequency domain for structural health monitoring.” J. Phys. Conf. Ser. 357 (1): 012007. https://doi.org/10.1088/1755-1315/357/1/012007.
Sarbolandi, H., D. Lefloch, and A. Kolb. 2015. “Kinect range sensing: Structured-light versus time-of-flight Kinect.” Comput. Vision Image Understanding 139 (Aug): 1–20. https://doi.org/10.1016/j.cviu.2015.05.006.
Sen, D., K. Erazo, W. Zhang, S. Nagarajaiah, and L. Sun. 2019. “On the effectiveness of principal component analysis for decoupling structural damage and environmental effects in bridge structures.” J. Sound 457 (Sep): 280–298. https://doi.org/10.1016/j.jsv.2019.06.003.
Siringoringo, D. M., and Y. Fujino. 2012. “Estimating bridge fundamental frequency from vibration response of instrumented passing vehicle: Analytical and experimental study.” Adv. Struct. Eng. 15 (3): 417–433. https://doi.org/10.1260/1369-4332.15.3.417.
Sivasuriyan, A., D. S. Vijayan, G. Wojciech, Ł. Wodzynski, M. D. Vaverkova, and E. Koda. 2021. “Practical implementation of structural health monitoring in multi-story buildings.” Buildings 11 (6): 263. https://doi.org/10.3390/buildings11060263.
Smith, I. F. C. 2016. “Studies of sensor data interpretation for asset management of the built environment.” Front. Built Environ. 2 (Mar): 8. https://doi.org/10.3389/fbuil.2016.00008.
Sohn, H., M. Dzwonczyk, E. G. Straser, A. S. Kiremidjian, K. H. Law, and T. Meng. 1999. “An experimental study of temperature effect on modal parameters of the Alamosa canyon bridge.” Earthquake Eng. Struct. Dyn. 28 (8): 879–897. https://doi.org/10.1002/(SICI)1096-9845(199908)28:8%3C879::AID-EQE845%3E3.0.CO;2-V.
Sohn, H., C. R. Farrar, F. Hemez, and J. Czarnecki. 2001. A review of structural health. Los Almos, NM: Los Alamos National Laboratory.
Sohn, H., C. R. Farrar, F. M. Hemez, D. D. Shunk, D. W. Stinemates, B. R. Nadler, and J. J. Czarnecki. 2004. A review of structural health monitoring literature: 1996–2001. Los Almos, NM: Los Alamos National Laboratory.
Spano’ Politecnico Di Torino, A., F. Rinaudo, F. Chiabrando, A. Lingua, and A. Spanò. 2014. “Archaeological site monitoring: UAV photogrammetry can be an answer.” Int. Arch Photogramm. Remote Sens. Spatial Inf. Sci. 39 (B5): 583–588. https://doi.org/10.5194/isprsarchives-XXXIX-B5-583-2012.
Su, J. Z., et al. 2013. “Long-term structural performance monitoring system for the shanghai tower.” J. Civ. Struct. Health Monit. 3 (1): 49–61. https://doi.org/10.1007/s13349-012-0034-z.
Su, Z., and L. Ye. 2004. “An intelligent signal processing and pattern recognition technique for defect identification using an active sensor network.” Smart Mater. Struct. 13 (4): 957–969. https://doi.org/10.1088/0964-1726/13/4/034.
Sun, H., and O. Büyüköztürk. 2015. “Identification of traffic-induced nodal excitations of truss bridges through heterogeneous data fusion.” Smart Mater. Struct. 24 (7): 075032. https://doi.org/10.1088/0964-1726/24/7/075032.
Sung, S. H., J. W. Park, T. Nagayama, and H. J. Jung. 2014. “A multi-scale sensing and diagnosis system combining accelerometers and gyroscopes for bridge health monitoring.” Smart Mater. Struct. 23 (1): 015005. https://doi.org/10.1088/0964-1726/23/1/015005.
Tamura, Y., M. Matsui, L. C. Pagnini, R. Ishibashi, and A. Yoshida. 2002. “Measurement of wind-induced response of buildings using RTK-GPS.” J. Wind Eng. Ind. Aerodyn. 90 (12–15): 1783–1793. https://doi.org/10.1016/S0167-6105(02)00287-8.
Taşçi, L. 2015. “Deformation monitoring in steel arch bridges through close-range photogrammetry and the finite element method.” Exp. Tech. 39 (3): 3–10. https://doi.org/10.1111/ext.12022.
Taylor, S. G., K. M. Farinholt, E. B. Flynn, E. Figueiredo, D. L. Mascarenas, E. A. Moro, G. Park, M. D. Todd, and C. R. Farrar. 2009. “A mobile-agent-based wireless sensing network for structural monitoring applications.” Meas. Sci. Technol. 20 (4): 045201. https://doi.org/10.1088/0957-0233/20/4/045201.
Teughels, A., J. Maeck, and G. De Roeck. 2002. “Damage assessment by FE model updating using damage functions.” Comput. Struct. 80 (25): 1869–1879. https://doi.org/10.1016/S0045-7949(02)00217-1.
Thenozhi, S., W. Yu, A. López Chau, and X. Li. 2012. “Structural health monitoring of tall buildings with numerical integrator and convex-concave hull classification.” Math. Probl. Eng. 2012 (Jan): 1–15. https://doi.org/10.1155/2012/212369.
Torkamani, S., A. A. Jafari, and H. M. Navazi. 2008. “Scaled down models for free vibration analysis of orthogonally stiffened cylindrical shells using similitude theory.” In Proc., 26th Congress of the Int. Council of the Aeronautical Sciences, 1–12. Edinburgh, UK: Optimage.
Uchimura, Y., T. Nasu, and M. Takahashi. 2010. “IEEE 802.11-based wireless sensor system for vibration measurement.” Adv. Civ. Eng. 2010 (Mar): 1–9. https://doi.org/10.1155/2010/631939.
Valença, J., E. N. B. S. Júlio, and H. J. Araújo. 2012. “Applications of photogrammetry to structural assessment.” Exp. Tech. 36 (5): 71–81. https://doi.org/10.1111/j.1747-1567.2011.00731.x.
Wang, J. J., N. Gowripalan, J. Li, and V. V. Nguyen. 2017. “Close-range photogrammetry for accurate deformation distribution measurement.” In Proc., 24th Australasian Conf. on the Mechanics of Structures and Materials, 739–799. Boca Raton, FL: CRC Press.
Wang, Z., H. Kieu, H. Nguyen, and M. Le. 2015. “Digital image correlation in experimental mechanics and image registration in computer vision: similarities, differences and complements.” Opt. Lasers Eng. 65 (Feb): 18–27. https://doi.org/10.1016/j.optlaseng.2014.04.002.
Watson, C., T. Watson, and R. Coleman. 2007. “Structural monitoring of cable-stayed bridge: Analysis of GPS versus modeled deflections.” J. Surv. Eng. 133 (1): 23–28. https://doi.org/10.1061/(ASCE)0733-9453(2007)133:1(23).
Williams, T., and A. Kareem. 2003. “Performance of building cladding in urban environments under extreme winds.” In Proc., 11th Int. Conf. on Wind Engineering. Lubbock, TX: Wind Science and Engineering Research Center at Texas Tech Univ.
Worden, K., C. R. Farrar, G. Manson, and G. Park. 2007. “The fundamental axioms of structural health monitoring.” Proc. R. Soc. A: Math., Phys. Eng. Sci. 463 (2082): 1639–1664. https://doi.org/10.1098/rspa.2007.1834.
Wu, J., S. Yuan, S. Ji, G. Zhou, Y. Wang, and Z. Wang. 2010. “Multi-agent system design and evaluation for collaborative wireless sensor network in large structure health monitoring.” Expert Syst. Appl. 37 (3): 2028–2036. https://doi.org/10.1016/j.eswa.2009.06.098.
Wu, J. R., P. F. Liu, and Q. S. Li. 2007. “Effects of amplitude-dependent damping and time constant on wind-induced responses of super tall building.” Comput. Struct. 85 (15–16): 1165–1176. https://doi.org/10.1016/j.compstruc.2007.01.012.
Wu, L. J., F. Casciati, and S. Casciati. 2014. “Dynamic testing of a laboratory model via vision-based sensing.” Eng. Struct. 60 (Feb): 113–125. https://doi.org/10.1016/j.engstruct.2013.12.002.
Wu, T., G. Liu, S. Fu, and F. Xing. 2020. “Recent progress of fiber-optic sensors for the structural health monitoring of civil infrastructure.” Sensors 20 (16): 1–25. https://doi.org/10.3390/s20164517.
Xi, R., X. M. Weiping Jiang, H. Chen, and Q. Chen. 2018. “Bridge monitoring using BDS-RTK and GPS-RTK techniques.” Meas. J. Int. Meas. Confederation 120 (May): 128–139. https://doi.org/10.1016/j.measurement.2018.02.001.
Xia, Y., P. Zhang, Y. Q. Ni, and H. P. Zhu. 2014. “Deformation monitoring of a super-tall structure using real-time strain data.” Eng. Struct. 67 (May): 29–38. https://doi.org/10.1016/j.engstruct.2014.02.009.
Xu, Y. L., S. W. Chen, and R. C. Zhang. 2003. “Modal identification of Di Wang building under Typhoon York using the Hilbert-Huang transform method.” Struct. Des. Tall Build. 12 (1): 21–47. https://doi.org/10.1002/tal.211.
Xu, Y.-L., and Y. Xia. 2012. Structural health monitoring of long-span suspension bridges. New York: Spon Press.
Yan, A.-M., G. Kerschen, P. De Boe, and J.-C. Golinval. 2005. “Structural damage diagnosis under varying environmental conditions—Part I: A linear analysis.” Mech. Syst. Sig. Process. 19 (4): 847–864. https://doi.org/10.1016/J.YMSSP.2004.12.002.
Yang, Y. B., and K. C. Chang. 2009. “Extracting the bridge frequencies indirectly from a passing vehicle: Parametric study.” Eng. Struct. 31 (10): 2448–2459. https://doi.org/10.1016/j.engstruct.2009.06.001.
Yang, Y. B., Y. C. Li, and K. C. Chang. 2012. “Effect of road surface roughness on the response of a moving vehicle for identification of bridge frequencies.” Interact. Multiscale Mech. 5 (4): 347–368. https://doi.org/10.12989/imm.2012.5.4.347.
Yang, Y. B., C. W. Lin, and J. D. Yau. 2004. “Extracting bridge frequencies from the dynamic response of a passing vehicle.” J. Sound Vib. 272 (3–5): 471–493. https://doi.org/10.1016/S0022-460X(03)00378-X.
Yang, Y.-B., J.-D. Yau, and L.-C. Hsu. 1997. “Vibration of simple beams due to trains moving at high speeds.” Eng. Struct. 19 (11): 936–944. https://doi.org/10.1016/S0141-0296(97)00001-1.
Yi, T. H., H. Nan Li, and M. Gu. 2013a. “Experimental assessment of high-rate GPS receivers for deformation monitoring of bridge.” Meas.: J. Int. Meas. Confederation 46 (1): 420–432. https://doi.org/10.1016/j.measurement.2012.07.018.
Yi, T. H., H. Nan Li, and M. Gu. 2013b. “Recent research and applications of GPS-based monitoring technology for high-rise structures.” Struct. Control Health Monit. 20 (5): 649–670. https://doi.org/10.1002/stc.1501.
Yi, T. H., H. Nan Li, and M. Gu. 2013c. “Wavelet based multi-step filtering method for bridge health monitoring using GPS and accelerometer.” Smart Struct. Syst. 11 (4): 331–348. https://doi.org/10.12989/sss.2013.11.4.331.
Yi, Z., C. Kuang, Y. Wang, W. Yu, C. Cai, and W. Dai. 2018. “Combination of high- and low-rate GPS receivers for monitoring wind-induced response of tall buildings.” Sensors (Basel) 18 (12): 4100. https://doi.org/10.3390/s18124100.
Yigit, C. O. 2016. “Experimental assessment of post-processed kinematic precise point positioning method for structural health monitoring.” Geomatics, Nat. Hazards Risk 7 (1): 360–383. https://doi.org/10.1080/19475705.2014.917724.
Yigit, C. O., and E. Gurlek. 2017. “Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures.” Geomatics, Nat. Hazards Risk 8 (2): 893–904. https://doi.org/10.1080/19475705.2017.1284160.
Yigit, C. O., X. Li, C. Inal, L. Ge, and M. Yetkin. 2010. “Preliminary evaluation of precise inclination sensor and GPS for monitoring full-scale dynamic response of a tall reinforced concrete building.” J. Appl. Geod. 4 (2): 103–113. https://doi.org/10.1515/jag.2010.010.
Yigit, C. O., M. Zeki Coskun, H. Yavasoglu, A. Arslan, and Y. Kalkan. 2016. “The potential of GPS precise point positioning method for point displacement monitoring: A case study.” Meas.: J. Int. Meas. Confederation 91 (Sep): 398–404. https://doi.org/10.1016/j.measurement.2016.05.074.
Yoon, H., V. Hoskere, J.-W. Park, and B. Spencer. 2017. “Cross-correlation-based structural system identification using unmanned aerial vehicles.” Sensors 17 (9): 2075. https://doi.org/10.3390/s17092075.
Yu, J., X. Meng, X. Shao, B. Yan, and L. Yang. 2014. “Identification of dynamic displacements and modal frequencies of a medium-span suspension bridge using multimode GNSS processing.” Eng. Struct. 81: 432–443. https://doi.org/10.1016/j.engstruct.2014.10.010.
Yu, S. N., J. H. Jang, and C. S. Han. 2007. “Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel.” Autom. Constr. 16 (3): 255–261. https://doi.org/10.1016/j.autcon.2006.05.003.
Yuan, S., D. Liang, L. Qiu, and M. Liu. 2012. “Mobile multi-agent evaluation method for wireless sensor networks-based large-scale structural health monitoring.” Int. J. Distrib. Sens. Netw. 2012 (Nov): 1–15. https://doi.org/10.1155/2012/164527.
Zang, C., M. I. Friswell, and M. Imregun. 2004. “Structural damage detection using independent component analysis.” Struct. Health Monit. 3 (1): 69–83. https://doi.org/10.1177/1475921704041876.
Zhang, S., H. Liu, A. A. S. Coulibaly, and M. DeJong. 2021. “Fiber optic sensing of concrete cracking and rebar deformation using several types of cable.” Struct. Control Health Monit. 28 (2): e2664. https://doi.org/10.1002/stc.2664.
Zhang, Y., L. Wang, and Z. Xiang. 2012. “Damage detection by mode shape squares extracted from a passing vehicle.” J. Sound Vib. 331 (2): 291–307. https://doi.org/10.1016/j.jsv.2011.09.004.
Zhao, X., R. H. J. Lu, X. Kong, Y. Wang, and L. Li. 2012. “Application of multiscale fiber optical sensing network based on Brillouin and fiber Bragg grating sensing techniques on concrete structures.” Int. J. Distrib. Sens. Netw. 8 (10): 310797. https://doi.org/10.1155/2012/310797.
Zhong, S., J. Zhong, Q. Zhang, and N. Maia. 2017. “Quasi-optical coherence vibration tomography technique for damage detection in beam-like structures based on auxiliary mass induced frequency shift.” Mech. Syst. Sig. Process. 93 (Sep): 241–254. https://doi.org/10.1016/j.ymssp.2017.02.005.
Zhu, D., X. Yi, Y. Wang, K. Meng Lee, and J. Guo. 2010. “A mobile sensing system for structural health monitoring: Design and validation.” Smart Mater. Struct. 19 (5): 055011. https://doi.org/10.1088/0964-1726/19/5/055011.
Zhu, X. Q., and S. S. Law. 2007. “Damage detection in simply supported concrete bridge structures under moving vehicular loads.” J. Vib. Acoust 129 (1): 58–65. https://doi.org/10.1115/1.2202150.
Zhu, X. Q., and S. S. Law. 2015. “Structural health monitoring based on vehicle-bridge interaction: Accomplishments and challenges.” Adv. Struct. Eng. 18 (12): 1999–2015. https://doi.org/10.1260/1369-4332.18.12.1999.

Information & Authors

Information

Published In

Go to Practice Periodical on Structural Design and Construction
Practice Periodical on Structural Design and Construction
Volume 27Issue 3August 2022

History

Published online: May 26, 2022
Published in print: Aug 1, 2022
Discussion open until: Oct 26, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

P.E.
Professor, Dept. of Civil Engineering, College of Engineering, American Univ. of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates (corresponding author). ORCID: https://orcid.org/0000-0002-5004-0778. Email: [email protected]
Graduate Research Assistant, Dept. of Civil Engineering, College of Engineering, American Univ. of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. ORCID: https://orcid.org/0000-0002-5629-9385. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Reinforcement Learning for Integrated Structural Control and Health Monitoring, Practice Periodical on Structural Design and Construction, 10.1061/PPSCFX.SCENG-1455, 29, 3, (2024).
  • A Robotic Automated Solution for Operational Modal Analysis of Bridges with High-Resolution Mode Shape Recovery, Journal of Structural Engineering, 10.1061/JSENDH.STENG-12635, 150, 8, (2024).
  • Structural Health Monitoring via Phase Space Warping and Time-Delay Embedding, Journal of Structural Engineering, 10.1061/JSENDH.STENG-11415, 149, 2, (2023).
  • The State of the Art of Artificial Intelligence Approaches and New Technologies in Structural Health Monitoring of Bridges, Applied Sciences, 10.3390/app13010097, 13, 1, (97), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share