Abstract

Methodologies for dosing fine/coarse-grained soils with cement using the porosity/cement ratio (η/Civ) have mainly focused on the nonoptimal compaction conditions to calculate the split tensile and compressive strengths as well as the empirical relationships between both tests, neglecting the study on the optimal soil-cement mixes compaction conditions. Thus, this technical paper aims to determine the equations that control the empirical relationships between split tensile (STS or qt) and unconfined compressive strengths (UCS or qu) of a sedimentary soil improved with portland cement (PC) under optimal compaction conditions using the η/Civ ratio. The results showed a power increase of qt and qu with the curing time and the decrease of η/Civ ratio. In addition, it has been demonstrated that a relationship between tensile and compression might be defined using the η/Civ ratio adjusted to an exponent β=0.45, constant for all curing times. Therefore, the tensile/compression ratio obtained was 0.15, 0.16, and 0.17 for the 7th, 14th, and 28th days of cure, respectively. All qt and qu data were normalized (divided) into a single power increase function (93% acceptance with a 4.36% error) to find any mechanical resistance value with variables and molding conditions using the η/Civ0.45 ratio. Finally, the η/Civ ratio was a suitable parameter for dosing soil-cement mixes under optimal compaction conditions.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors are thankful to the Federal University of Technology-Paraná and to the financial support given by Coordination for the Improvement of Higher Education Personnel (CAPES), Fundação Araucária do Paraná and National Council for Scientific and Technological Development (CNPq) in Brazil. Finally, authors would like to thank the anonymous reviewers for their in-depth comments, suggestions, and corrections, which have greatly improved the manuscript.

References

ABNT (Associação Brasileira de Normas Técnicas). 2007. Mortar and concrete—Test method for compressive strength of cylindrical specimens. [In Portuguese.]. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2011. Mortar and concrete—Test method for splitting tensile strength of cylindrical specimens. [In Portuguese.]. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2016. Soil-compaction testing. [In Portuguese.]. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2017. Portland cement and other powdered material—Determination of the specific gravity. [In Portuguese.]. Rio de Janeiro, Brazil: ABNT.
ASTM. 2010. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318. West Conshohocken, PA: ASTM.
ASTM. 2011a. Standard classification of soils for engineering purposes (unified soil classification system). ASTM D2487. West Conshohocken, PA: ASTM.
ASTM. 2011b. Standard test method for direct shear test of soils under consolidated drained conditions. ASTM D3080. West Conshohocken, PA: ASTM.
ASTM. 2012a. Standard test methods for laboratory compaction characteristics of soil using modified effort (2,700 kN-m/m3). ASTM D1557. West Conshohocken, PA: ASTM.
ASTM. 2012b. Standard test methods for laboratory compaction characteristics of soil using standard effort (600 kN-m/m3). ASTM D698. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard specification for portland cement. ASTM C150. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard test method for splitting tensile strength of cylindrical concrete specimens. ASTM C496. West Conshohocken, PA: ASTM.
Baldovino, J. A. 2018. “Comportamento mecânico de um solo siltoso da formação geológica Guabirotuba tratado com cal em diferentes tempos de cura.” [In Portuguese.] Master dissertation, Federal Univ. of Technology-Paraná.
Baldovino, J. A., and R. L. Izzo. 2019. “Relação porosidade/cimento como parâmetro de controle na estabilização de um solo siltoso.” [In Portuguese.] Colloquium Exactarum 11 (1): 89–100. https://doi.org/10.5747/ce.2019.v11.n1.e269.
Baldovino, J. A., E. B. Moreira, É. Carazzai, E. V. D. G. Rocha, R. dos Santos Izzo, W. Mazer, and J. L. Rose. 2019a. “Equations controlling the strength of sedimentary silty soil–cement blends: Influence of voids/cement ratio and types of cement.” Int. J. Geotech. Eng. 1–14. https://doi.org/10.1080/19386362.2019.1612134.
Baldovino, J. A., E. B. Moreira, and R. L. Izzo. 2018a. “Discussion of ‘Control factors for the long term compressive strength of lime treated sandy clay soil’.” Transp. Geotech. 15 (Jun): 1–3. https://doi.org/10.1016/j.trgeo.2017.11.002.
Baldovino, J. A., E. B. Moreira, R. L. Izzo, and J. L. Rose. 2019b. “Optimizing the evolution of strength for lime-stabilized rammed soil.” J. Rock Mech. Geotech. Eng. 11 (4): 882–891. https://doi.org/10.1016/j.jrmge.2018.10.008.
Baldovino, J. A., E. B. Moreira, R. L. D. S. Izzo, and J. L. Rose. 2018b. “Empirical relationships with unconfined compressive strength and split tensile strength for the long term of a lime-treated silty soil.” J. Mater. Civ. Eng. 30 (8): 06018008. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002378.
Baldovino, J. A., E. B. Moreira, W. Teixeira, R. L. Izzo, and J. L. Rose. 2018c. “Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil.” J. Rock Mech. Geotech. Eng. 10 (1): 188–194. https://doi.org/10.1016/j.jrmge.2017.10.001.
Bouazza, A., P. S. Kwan, and G. Chapman. 2004. “Strength properties of cement treated Coode Island Silt by the soil mixing method.” In Geotechnical engineering for transportation projects, 1421–1428. Reston, VA: ASCE.
Chompoorat, T., T. Maikhun, and S. Likitlersuang. 2019. “Cement improved lake bed sedimentary soil for road construction.” Proc. Inst. Civ. Eng. Ground Improv. 172 (3): 192–201. https://doi.org/10.1680/jgrim.18.00076.
Consoli, N. C., R. C. Cruz, and M. F. Floss. 2011a. “Variables controlling strength of artificially cemented sand: Influence of curing time.” J. Mater. Civ. Eng. 23 (5): 692–696. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000205.
Consoli, N. C., R. C. Cruz, M. F. Floss, and L. Festugato. 2010. “Parameters controlling tensile and compressive strength of artificially cemented sand.” J. Geotech. Geoenviron. Eng. 136 (5): 759–763. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000278.
Consoli, N. C., A. Dalla Rosa, M. B. Corte, L. D. S. Lopes, Jr., and B. S. Consoli. 2011b. “Porosity-cement ratio controlling strength of artificially cemented clays.” J. Mater. Civ. Eng. 23 (8): 1249–1254. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000283.
Consoli, N. C., A. Dalla Rosa Johann, E. A. Gauer, V. R. Dos Santos, R. L. Moretto, and M. B. Corte. 2012. “Key parameters for tensile and compressive strength of silt–lime mixtures.” Géotech. Lett. 2 (3): 81–85. https://doi.org/10.1680/geolett.12.00014.
Consoli, N. C., P. M. V. Ferreira, C. S. Tang, S. F. V. Marques, L. Festugato, and M. B. Corte. 2016. “A unique relationship determining strength of silty/clayey soils–portland cement mixes.” Soils Found. 56 (6): 1082–1088. https://doi.org/10.1016/j.sandf.2016.11.011.
Consoli, N. C., L. Festugato, C. G. Da Rocha, and R. C. Cruz. 2013. “Key parameters for strength control of rammed sand-cement mixtures: Influence of types of portland cement.” Constr. Build. Mater. 49 (Dec): 591–597. https://doi.org/10.1016/j.conbuildmat.2013.08.062.
Consoli, N. C., D. Foppa, L. Festugato, and K. S. Heineck. 2007. “Key parameters for strength control of artificially cemented soils.” J. Geotech. Geoenviron. Eng. 133 (2): 197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197).
Diambra, A., E. Ibraim, A. Peccin, N. C. Consoli, and L. Festugato. 2017. “Theoretical derivation of artificially cemented granular soil strength.” J. Geotech. Geoenviron. Eng. 143 (5): 04017003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001646.
Du, Y. J., N. J. Jiang, S. Y. Liu, S. Horpibulsuk, and A. Arulrajah. 2016. “Field evaluation of soft highway subgrade soil stabilized with calcium carbide residue.” Soils Found. 56 (2): 301–314. https://doi.org/10.1016/j.sandf.2016.02.012.
Goodary, R., G. L. Lecomte-Nana, C. Petit, and D. S. Smith. 2012. “Investigation of the strength development in cement-stabilised soils of volcanic origin.” Constr. Build. Mater. 28 (1): 592–598. https://doi.org/10.1016/j.conbuildmat.2011.08.054.
Gupta, C., and A. Prasad. 2018. “Variables controlling strength of lime stabilized jarosite waste.” Int. J. Geo-Eng. 9 (1): 1–15. https://doi.org/10.1186/s40703-018-0074-2.
Han, J. 2015. Principles and practice of ground improvement. Hoboken, NJ: Wiley.
Ho, L. S., K. Nakarai, M. Duc, A. Le Kouby, A. Maachi, and T. Sasaki. 2018. “Analysis of strength development in cement-treated soils under different curing conditions through microstructural and chemical investigations.” Constr. Build. Mater. 166 (Mar): 634–646. https://doi.org/10.1016/j.conbuildmat.2018.01.112.
Horpibulsuk, S., R. Rachan, A. Chinkulkijniwat, Y. Raksachon, and A. Suddeepong. 2010. “Analysis of strength development in cement-stabilized silty clay from microstructural considerations.” Constr. Build. Mater. 24 (10): 2011–2021. https://doi.org/10.1016/j.conbuildmat.2010.03.011.
Ingles, O. G., and J. B. Metcalf. 1972. In Vol. 11 of Soil stabilization principles and practice, 374. Melbourne, Australia: Butterworths.
Jan, O. Q., and B. A. Mir. 2018. “Strength behaviour of cement stabilised dredged soil.” Int. J. Geosynthetics Ground Eng. 4 (2): 16. https://doi.org/10.1007/s40891-018-0133-y.
Jiang, N. J., Y. J. Du, S. Y. Liu, M. L. Wei, S. Horpibulsuk, and A. Arulrajah. 2016. “Multi-scale laboratory evaluation of the physical, mechanical, and microstructural properties of soft highway subgrade soil stabilized with calcium carbide residue.” Can. Geotech. J. 53 (3): 373–383. https://doi.org/10.1139/cgj-2015-0245.
Kezdi, A., and L. Rethati. 1988. Vol. 3 of Soil mechanics of earthworks, foundations, and highway engineering, 368. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/C2009-0-15474-0.
Larnach, W. J. 1960. “Relationship between dry density, voids/cement ratio and the strength of soil-cement mixtures.” Civ. Eng. Public Works Rev./UK 60 (708).
Mirzababaei, M., A. Arulrajah, S. Horpibulsuk, A. Soltani, and N. Khayat. 2018. “Stabilization of soft clay using short fibers and poly vinyl alcohol.” Geotext. Geomembr. 46 (5): 646–655. https://doi.org/10.1016/j.geotexmem.2018.05.001.
Mola-Abasi, H., A. Khajeh, and S. Naderi Semsani. 2018a. “Effect of the ratio between porosity and SiO2 and Al2O3 on tensile strength of zeolite-cemented sands.” J. Mater. Civ. Eng. 30 (4): 04018028. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002197.
Mola-Abasi, H., A. Khajeh, and S. N. S. Semsani. 2018b. “Porosity/(SiO2 and Al2O3 particles) ratio controlling compressive strength of zeolite-cemented sands.” Geotech. Geol. Eng. 36 (2): 949–958. https://doi.org/10.1007/s10706-017-0367-9.
Mola-Abasi, H., B. Kordtabar, and A. Kordnaeij. 2016. “Effect of natural zeolite and cement additive on the strength of sand.” Geotech. Geol. Eng. 34 (5): 1539–1551. https://doi.org/10.1007/s10706-016-0060-4.
Mola-Abasi, H., and I. Shooshpasha. 2016. “Influence of zeolite and cement additions on mechanical behavior of sandy soil.” J. Rock Mech. Geotech. Eng. 8 (5): 746–752. https://doi.org/10.1016/j.jrmge.2016.01.008.
Moore, R. K., T. W. Kennedy, and W. R. Hudson. 1970. “Factors affecting the tensile strength of cement-treated materials.” In Vol. 315 of Highway research record: Soil stabilization: Multiple aspects, 64–80. Washington, DC: Highway Research Board.
Moreira, E. B., J. A. Baldovino, J. L. Rose, and R. L. dos Santos Izzo. 2019. “Effects of porosity, dry unit weight, cement content and void/cement ratio on unconfined compressive strength of roof tile waste-silty soil mixtures.” J. Rock Mech. Geotech. Eng. 11 (2): 369–378. https://doi.org/10.1016/j.jrmge.2018.04.015.
National Department of Transport Infrastructure. 2010. Pavement soil-cement base—Service specification. [In Portuguese.]. Rio de Janeiro, Brazil: National Dept. of Transport Infrastructure.
Nguyen, T. T. M., et al. 2018. “Stabilization of silty clayey dredged material.” J. Mater. Civ. Eng. 30 (9): 04018199. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002391.
Puppala, A. J. 2016. “Advances in ground modification with chemical additives: From theory to practice.” Transp. Geotech. 9 (Dec): 123–138. https://doi.org/10.1016/j.trgeo.2016.08.004.
Rios, S., A. V. da Fonseca, N. C. Consoli, M. Floss, and N. Cristelo. 2013. “Influence of grain size and mineralogy on the porosity/cement ratio.” Géotech. Lett. 3 (3): 130–136. https://doi.org/10.1680/geolett.13.00003.
Rios, S., A. Viana da Fonseca, and B. A. Baudet. 2012. “Effect of the porosity/cement ratio on the compression of cemented soil.” J. Geotech. Geoenviron. Eng. 138 (11): 1422–1426. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000698.
Shen, S. L., J. Han, and Y. J. Du. 2008. “Deep mixing induced property changes in surrounding sensitive marine clays.” J. Geotech. Geoenviron. Eng. 134 (6): 845–854. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(845).
Shen, S. L., Z. F. Wang, and W. C. Cheng. 2017. “Estimation of lateral displacement induced by jet grouting in clayey soils.” Géotechnique 67 (7): 621–630. https://doi.org/10.1680/jgeot.16.P.159.
Shen, S.-L., Z.-F. Wang, J. Yang, and C.-E. Ho. 2013. “Generalized approach for prediction of jet grout column diameter.” J. Geotech. Geoenviron. Eng. 139 (12): 2060–2069. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000932.
TxDOT (Texas Department of Transportation). 2013. (TxDOT) test procedure for soil-cement testing. Tex-120-E. Austin, TX: TxDOT.
Yaghoubi, M., A. Arulrajah, M. M. Disfani, S. Horpibulsuk, S. Darmawan, and J. Wang. 2019. “Impact of field conditions on the strength development of a geopolymer stabilized marine clay.” Appl. Clay Sci. 167 (Jan): 33–42. https://doi.org/10.1016/j.clay.2018.10.005.
Yusuf, H., M. S. Pallu, L. Samang, and M. W. Tjaronge. 2012. “Improvement strength influence of sediment dredging the River Jeneberang with cement stabilization as an alternative building materials.” J. Eng. Appl. Sci. 7 (8–12): 501–506. https://doi.org/10.3923/jeasci.2012.501.506.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 1January 2020

History

Received: Sep 25, 2018
Accepted: Jun 14, 2019
Published online: Oct 23, 2019
Published in print: Jan 1, 2020
Discussion open until: Mar 23, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Dept. of Civil Construction, Federal Univ. of Technology–Paraná, Street Deputado Heitor Alencar Furtado, 5000, Campus Curitiba, Ecoville, Paraná CEP: 81280-340, Brazil. ORCID: https://orcid.org/0000-0001-7740-1679. Email: [email protected]
Ronaldo Luis dos Santos Izzo, D.Sc. https://orcid.org/0000-0002-6290-1520 [email protected]
Professor, Dept. of Civil Construction, Federal Univ. of Technology–Paraná, Street Deputado Heitor Alencar Furtado, 5000, Campus Curitiba, Ecoville, Paraná CEP: 81280-340, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-6290-1520. Email: [email protected]
Mirian Dayane Pereira [email protected]
P.E.
M.Sc. Candidate, Dept. of Civil Construction, Federal Univ. of Technology–Paraná, Street Deputado Heitor Alencar Furtado, 5000, Campus Curitiba, Ecoville, Paraná CEP: 81280-340, Brazil. Email: [email protected]
Eduardo Vieira de Goes Rocha [email protected]
B.Sc. Candidate, Dept. of Civil Construction, Federal Univ. of Technology–Paraná, Street Deputado Heitor Alencar Furtado, 5000, Campus Curitiba, Ecoville, Paraná CEP: 81280-340, Brazil. Email: [email protected]
Juliana Lundgren Rose, D.Sc. [email protected]
Researcher, Dept. of Civil Construction, Federal Univ. of Technology–Paraná, Street Deputado Heitor Alencar Furtado, 5000, Campus Curitiba, Ecoville, Paraná CEP: 81280-340, Brazil. Email: [email protected]
Vitor Reinaldo Bordignon [email protected]
Ph.D. Candidate, Dept. of Civil Construction, Federal Univ. of Technology–Paraná, Street Deputado Heitor Alencar Furtado, 5000, Campus Curitiba, Ecoville, Paraná CEP: 81280-340, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share