Technical Papers
Oct 26, 2022

Ciprofloxacin and Metronidazole Adsorption on Chitosan-Modified Graphene Oxide as Single-Compound and Binary Mixtures: Kinetics, Isotherm, and Sorption Mechanism

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 27, Issue 1

Abstract

The synergistic and antagonistic effects that are involved in the adsorption of metronidazole (MNZ) and ciprofloxacin (CIP) as single and binary mixtures were investigated. First, a chitosan-modified graphene oxide (CS–GO) adsorbent was synthesized (as beads) and characterized using Fourier-transform infrared spectroscopy (FTIR), Bruaneur–Emmett–Teller (BET), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analysis. The FTIR graph showed amino bond formation between a carbonyl with an amino (NH2) group and intermolecular hydrogen (H) bond between the hydroxyl (OH) and carboxyl (COOH) with the NH2 group of GO and CS, respectively. In addition, the SEM and XRD diagrams revealed a good attachment between CS and GO. The kinetic sorption experiments revealed that adsorption followed pseudo second-order with a higher rate constant for CIP than MNZ. In a single solute system, adsorption followed the multilayer Langmuir isotherm with maximum adsorption capacities of 29.76 and 102 mg/g for MNZ and CIP, respectively. In the binary mixture, MNZ and CIP showed antagonistic effects with a respective decrease in adsorption capacities to 13.15 and 4.3 mg/g, respectively. The major interactions inferred were π–π electron donor–acceptor (EDA), H bond, and hydrophobic interactions for both antibiotics along with electrostatic and cation–π interactions for CIP. In addition, the adsorbent showed good disinfection capability for secondary treated effluents, and the disinfection potential was further increased by the addition of a small amount of silver (Ag). The CS–GO showed good performance and stability in the removal of CIP and MNZ in single and binary mixture experiments. However, the repeated use of the adsorbent showed a decrease in the removal of CIP and MNZ, which requires further investigation.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors greatly appreciate the funding provided by Shastri Indo-Canadian Institute for executing this research work (SICRG-2019-20-R2-1401).

References

Afzal, M. Z., X. F. Sun, J. Liu, C. Song, S. G. Wang, and A. Javed. 2018. “Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads.” Sci. Total Environ. 639: 560–569. https://doi.org/10.1016/j.scitotenv.2018.05.129.
Ahmed, M. J., B. H. Hameed, and E. H. Hummadi. 2020. “Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants.” Carbohydr. Polym. 247: 116690. https://doi.org/10.1016/j.carbpol.2020.116690.
Ahsan, M. A., M. T. Islam, C. Hernandez, E. Castro, S. K. Katla, H. Kim, Y. Lin, M. L. Curry, J. G. Torresdey, and J. C. Noveron. 2018. “Biomass conversion of saw dust to a functionalized carbonaceous materials for the removal of Tetracycline, Sulfamethoxazole and Bisphenol A from water.” J. Environ. Chem. Eng. 6 (4): 4329–4338. https://doi.org/10.1016/j.jece.2018.06.040.
Alkan, M., O. Demirbaş, and M. Doğan. 2007. “Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite.” Microporous Mesoporous Mater. 101 (3): 388–396. https://doi.org/10.1016/j.micromeso.2006.12.007.
Arikan, O. A. 2008. “Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves.” J. Hazard. Mater. 158 (2–3): 485–490. https://doi.org/10.1016/j.jhazmat.2008.01.096.
Arya, V., and L. Philip. 2016. “Adsorption of pharmaceuticals in water using Fe3O4 coated polymer clay composite.” Microporous Mesoporous Mater. 232: 273–280. https://doi.org/10.1016/j.micromeso.2016.06.033.
Asgari, E., A. Sheikhmohammadi, and J. Yeganeh. 2020. “Application of the Fe3O4-chitosan nano-adsorbent for the adsorption of metronidazole from wastewater: Optimization, kinetic, thermodynamic and equilibrium studies.” Int. J. Biol. Macromol. 164: 694–706. https://doi.org/10.1016/j.ijbiomac.2020.07.188.
Avci, A., I. Inci, and N. Baylan. 2020. “Adsorption of ciprofloxacin hydrochloride on multiwall carbon nanotube.” J. Mol. Struct. 1206: 127711. https://doi.org/10.1016/j.molstruc.2020.127711.
Balarak, D., A. H. Mansouri, and K. Chandrika. 2019. “Adsorption characteristics of metronidazole from industrial wastewater onto polyaniline nanocomposite.” Int. J. Life Sci. Pharm. Res. 9 (4): 49–58. https://doi.org/http://dx.doi.org/10.22376/ijpbs/lpr.2019.9.4.L49-58.
Carrales-Alvarado, D. H., I. Rodriguez-Ramos, R. Leyva-Ramos, E. Mendoza-Mendoza, and D. E. Villela-Martinez. 2020. “Effect of surface area and physical–chemical properties of graphite and graphene-based materials on their adsorption capacity towards metronidazole and trimethoprim antibiotics in aqueous solution.” Chem. Eng. J. 402: 126155. https://doi.org/10.1016/j.cej.2020.126155.
Chen, W., L. Duan, and D. Zhu. 2007. “Adsorption of polar and nonpolar organic chemicals to carbon nanotubes.” Environ. Sci. Technol. 41 (24): 8295–8300. https://doi.org/10.1021/es071230h.
Chen, W. R., and C. H. Huang. 2010. “Adsorption and transformation of tetracycline antibiotics with aluminum oxide.” Chemosphere 79 (8): 779–785. https://doi.org/10.1016/j.chemosphere.2010.03.020.
Cheung, W. H., Y. S. Szeto, and G. McKay. 2007. “Intraparticle diffusion processes during acid dye adsorption onto chitosan.” Bioresour. Technol. 98 (15): 2897–2904. https://doi.org/10.1016/j.biortech.2006.09.045.
Dhiman, N. K., and S. Agnihotri. 2020. “Hierarchically aligned nano silver/chitosan–PVA hydrogel for point-of-use water disinfection: Contact-active mechanism revealed.” Environ. Sci. Nano 7 (8): 2337–2350. https://doi.org/10.1039/D0EN00405G.
Diwan, V., A. J. Tamhankar, M. Aggarwal, S. Sen, R. K. Khandal, and C. S. Lundborg. 2009. “Detection of antibiotics in hospital effluents in India.” Curr. Sci. 97: 1752–1755. https://www.jstor.org/stable/24107255.
Ekande, O. S., and M. Kumar. 2021a. “Facile synthesis of graphitic carbon nitride from acetic acid pretreatment to activate persulfate in presence of blue light for photocatalytic removal of metronidazole.” Chemosphere 276: 130171. https://doi.org/10.1016/j.chemosphere.2021.130171.
Ekande, O. S., and M. Kumar. 2021b. “Review on polyaniline as reductive photocatalyst for the construction of the visible light active heterojunction for the generation of reactive oxygen species.” J. Environ. Chem. Eng. 9: 105725. https://doi.org/10.1016/j.jece.2021.105725.
El Rouby, W. M. A., A. A. Farghali, M. A. Sadek, and W. F. Khalil. 2018. “Fast removal of Sr(II) from water by graphene oxide and chitosan modified graphene oxide.” J. Inorg. Organomet. Polym. Mater. 28 (6): 2336–2349. https://doi.org/10.1007/s10904-018-0885-9.
Fick, J., H. Söderström, R. H. Lindberg, C. Phan, M. Tysklind, and D. J. Larsson. 2009. “Contamination of surface, ground, and drinking water from pharmaceutical production.” Environ. Toxicol. Chem. 28 (12): 2522–2527. https://doi.org/10.1897/09-073.1.
Flores-Cano, J. V., M. Sánchez-Polo, J. Messoud, I. Velo-Gala, R. Ocampo-Pérez, and J. Rivera-Utrilla. 2016. “Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells.” J. Environ. Manage. 169: 116–125. https://doi.org/10.1016/j.jenvman.2015.12.001.
Freundlich, H. 1907. “Über die adsorption in lösungen.” Z. Phys. Chem. 57U (1): 385–470. https://doi.org/10.1515/zpch-1907-5723.
Gao, Y., Y. Li, L. Zhang, H. Huang, J. Hu, S. M. Shah, and X. Su. 2012. “Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide.” J. Colloid Interface Sci. 368 (1): 540–546. https://doi.org/10.1016/j.jcis.2011.11.015.
Gros, M., M. Petrović, A. Ginebreda, and D. Barceló. 2010. “Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes.” Environ. Int. 36 (1): 15–26. https://doi.org/10.1016/j.envint.2009.09.002.
Ho, Y. S., and G. McKay. 1999. “Pseudo-second order model for sorption processes.” Process Biochem. 34 (5): 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5.
Hollman, J., J. A. Dominic, G. Achari, C. H. Langford, and J. H. Tay. 2020. “Effect of UV dose on degradation of venlafaxine using UV/H2O2: Perspective of augmenting UV units in wastewater treatment.” Environ. Technol. 41 (9): 1107–1116. https://doi.org/10.1080/09593330.2018.1521475.
Homem, V., and L. Santos. 2011. “Degradation and removal methods of antibiotics from aqueous matrices–a review.” J. Environ. Manage. 92 (10): 2304–2347. https://doi.org/10.1016/j.jenvman.2011.05.023.
Igwegbe, C. A., S. N. Oba, C. O. Aniagor, A. G. Adeniyi, and J. O. Ighalo. 2021. “Adsorption of ciprofloxacin from water: a comprehensive review.” J. Ind. Eng. Chem. 93: 57–77. https://doi.org/10.1016/j.jiec.2020.09.023.
Indherjith, S., S. Karthikeyan, J. H. R. Monica, and K. Krishna Kumar. 2019. “Graphene oxide & reduced graphene oxide polysulfone nanocomposite pellets: An alternative adsorbent of antibiotic pollutant-ciprofloxacin.” Sep. Sci. Technol. 54 (5): 667–674. https://doi.org/10.1080/01496395.2018.1518986.
Ji, L., W. Chen, L. Duan, and D. Zhu. 2009. “Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents.” Environ. Sci. Technol. 43 (7): 2322–2327. https://doi.org/10.1021/es803268b.
Kanakaraju, D., B. D. Glass, and M. Oelgemöller. 2018. “Advanced oxidation process-mediated removal of pharmaceuticals from water: A review.” J. Environ. Manage. 219: 189–207. https://doi.org/10.1016/j.jenvman.2018.04.103.
Klein, E. Y., T. P. V. Boeckel, E. M. Martinez, S. Pant, S. Gandra, S. A. Levin, H. Goossens, and R. Laxminarayan. 2018. “Global increase and geographic convergence in antibiotic consumption between 2000 and 2015.” Proc. Natl. Acad. Sci. U S A 115 (15): E3463–E3470. https://doi.org/10.1073/pnas.1717295115.
Koyuncu, I., O. A. Arikan, M. R. Wiesner, and C. Rice. 2008. “Removal of hormones and antibiotics by nanofiltration membranes.” J. Membr. Sci. 309 (1–2): 94–101. https://doi.org/10.1016/j.memsci.2007.10.010.
Kumar, A. S. K., and S. J. Jiang. 2016. “Chitosan-functionalized graphene oxide: A novel adsorbent an efficient adsorption of arsenic from aqueous solution.” J. Environ. Chem. Eng. 4 (2): 1698–1713. https://doi.org/10.1016/j.jece.2016.02.035.
Langmuir, I. 1916. “The constitution and fundamental properties of solids and liquids. Part I. Solids.” J. Am. Chem. Soc. 38 (11): 2221–2295. https://doi.org/10.1021/ja02268a002.
Larsson, D. J., C. de Pedro, and N. Paxeus. 2007. “Effluent from drug manufactures contains extremely high levels of pharmaceuticals.” J. Hazard. Mater. 148 (3): 751–755. https://doi.org/10.1016/j.jhazmat.2007.07.008.
Leung, H. W., L. Jin, S. Wei, M. M. P. Tsui, B. Zhou, L. Jiao, P. C. Cheung, Y. K. Chun, M. P. Murphy, and P. K. S. Lam. 2013. “Pharmaceuticals in tap water: Human health risk assessment and proposed monitoring framework in China.” Environ. Health Perspect. 121 (7): 839–846. https://doi.org/10.1289/ehp.1206244.
Li, H., D. Zhang, X. Han, and B. Xing. 2014. “Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics.” Chemosphere 95: 150–155. https://doi.org/10.1016/j.chemosphere.2013.08.053.
Li, M. F., Y. G. Liu, G. M. Zeng, N. Liu, and S. B. Liu. 2019. “Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: A review.” Chemosphere 226: 360–380. https://doi.org/10.1016/j.chemosphere.2019.03.117.
Li, Z., H. Hong, L. Liao, C. J. Ackley, L. A. Schulz, R. A. MacDonald, A. L. Mihelich, and S. M. Emard. 2011. “A mechanistic study of ciprofloxacin removal by kaolinite.” Colloids Surf., B 88 (1): 339–344. https://doi.org/10.1016/j.colsurfb.2011.07.011.
Liakos, E. V., M. Lazaridou, G. Michailidou, I. Koumentakou, D. A. Lambropoulou, D. N. Bikiaris, and G. Z. Kyzas. 2021. “Chitosan adsorbent derivatives for pharmaceuticals removal from effluents: A review.” Macromol 1 (2): 130–154. https://doi.org/10.3390/macromol1020011.
Lien, L. T. Q., N. Q. Hoa, N. T. K. Chuc, N. T. M. Thoa, H. D. Phuc, V. Diwan, N. T. Dat, A. J. Tamhankar, and C. S. Lundborg. 2016. “Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use—A one year study from Vietnam.” Int. J. Environ. Res. Public Health 13 (6): 588. https://doi.org/10.3390/ijerph13060588.
Liu, L., C. Li, C. Bao, Q. Jia, P. Xiao, X. Liu, and Q. Zhang. 2012. “Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II).” Talanta 93: 350–357. https://doi.org/10.1016/j.talanta.2012.02.051.
Liu, S., T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, and Y. Chen. 2011. “Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress.” ACS Nano 5 (9): 6971–6980. https://doi.org/10.1021/nn202451x.
Ma, W., J. Dai, X. Dai, and Y. Yan. 2014. “Preparation and characterization of chitosan/kaolin/Fe3O4 magnetic microspheres and their application for the removal of ciprofloxacin.” Adsorpt. Sci. Technol. 32 (10): 775–790. https://doi.org/10.1260%2F0263-6174.32.10.775.
Mahamadi, C., and T. Nharingo. 2010. “Competitive adsorption of Pb2+, Cd2+ and Zn2+ ions onto Eichhornia crassipes in binary and ternary systems.” Bioresour. Technol. 101 (3): 859–864. https://doi.org/10.1016/j.biortech.2009.08.097.
Malkhasian, A., M. Izadifard, G. Achari, and C. H. Langford. 2014. “Photocatalytic degradation of agricultural antibiotics using a UV-LED light source.” J. Environ. Sci. Health., Part B 49 (1): 35–40. https://doi.org/10.1080/03601234.2013.836871.
Manjunath, S. V., R. S. Baghel, and M. Kumar. 2020. “Antagonistic and synergistic analysis of antibiotic adsorption on Prosopis juliflora activated carbon in multicomponent systems.” Chem. Eng. J. 381: 122713. https://doi.org/10.1016/j.cej.2019.122713.
Manjunath, S. V., and M. Kumar. 2018. “Evaluation of single-component and multi-component adsorption of metronidazole, phosphate and nitrate on activated carbon from Prosopıs julıflora.” Chem. Eng. J. 346: 525–534. https://doi.org/10.1016/j.cej.2018.04.013.
Manjunath, S. V., S. M. Kumar, H. H. Ngo, and W. Guo. 2017. “Metronidazole removal in powder-activated carbon and concrete-containing graphene adsorption systems: Estimation of kinetic, equilibrium and thermodynamic parameters and optimization of adsorption by a central composite design.” J. Environ. Sci. Health., Part A 52 (14): 1269–1283. https://doi.org/10.1080/10934529.2017.1357406.
Marcano, D. C., D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, B. L. Alemany, W. Lu, and J. M. Tour. 2010. “Improved synthesis of graphene oxide.” ACS Nano 4 (8): 4806–4814. https://doi.org/10.1021/nn1006368.
Mehrabani-Zeinabad, M., G. Achari, and C. H. Langford. 2015. “Advanced oxidative degradation of bisphenol A and bisphenol S.” J. Environ. Eng. Sci. 10 (4): 92–102. https://doi.org/10.1680/jenes.15.00015.
Navalon, S., M. Alvaro, and H. Garcia. 2008. “Reaction of chlorine dioxide with emergent water pollutants: Product study of the reaction of three β-lactam antibiotics with ClO2.” Water Res. 42 (8–9): 1935–1942. https://doi.org/10.1016/j.watres.2007.11.023.
Neghi, N., and M. Kumar. 2017. “Performance analysis of photolytic, photocatalytic, and adsorption systems in the degradation of metronidazole on the perspective of removal rate and energy consumption.” Water Air Soil Pollut. 228 (9): 1–12. https://doi.org/10.1007/s11270-017-3532-0.
Neghi, N., M. Kumar, and D. Burkhalov. 2019. “Synthesis and application of stable, reusable TiO2 polymeric composites for photocatalytic removal of metronidazole: Removal kinetics and density functional analysis.” Chem. Eng. J. 359: 963–975. https://doi.org/10.1016/j.cej.2018.11.090.
Nellaiappan, N., G. Ravi, and M. Kumar. 2021. “Synthesis and application of chitosan–graphene oxide and titanium-dioxide coated granular activated carbon composites for adsorptive and photocatalytic removal of antibiotics.” J. Hazard. Toxic Radioact. Waste 25 (4): 04021025. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000627.
Peng, X., F. Hu, J. Huang, Y. Wang, H. Dai, and Z. Liu. 2016. “Preparation of a graphitic ordered mesoporous carbon and its application in sorption of ciprofloxacin: Kinetics, isotherm, adsorption mechanisms studies.” Microporous Mesoporous Mater. 228: 196–206. https://doi.org/10.1016/j.micromeso.2016.03.047.
Philip, J. M., U. K. Aravind, and C. T. Aravindakumar. 2018. “Emerging contaminants in Indian environmental matrices – A review.” Chemosphere 190: 307–326. https://doi.org/10.1016/j.chemosphere.2017.09.120.
Radwan, E., L. Yu, G. Achari, and C. H. Langford. 2016. “Photocatalytic ozonation of pesticides in a fixed bed flow through UVA-LED photoreactor.” Environ. Sci. Pollut. Res. 23 (21): 21313–21318. https://doi.org/10.1007/s11356-016-7346-1.
Radwan, E. K., H. H. A. Ghafar, A. S. Moursy, C. H. Langford, A. H. Bedair, and G. Achari. 2015. “Preparation and characterization of humic acid–carbon hybrid materials as adsorbents for organic micro-pollutants.” Environ. Sci. Pollut. Res. 22 (16): 12035–12049. https://doi.org/10.1007/s11356-015-4468-9.
Rajakumaran, R., V. Boddu, M. Kumar, M. S. Shalaby, H. Abdallah, and R. Chetty. 2019. “Effect of ZnO morphology on GO-ZnO modified polyamide reverse osmosis membranes for desalination.” Desalination 467: 245–256. https://doi.org/10.1016/j.desal.2019.06.018.
Salma, A., S. Thoröe-Boveleth, T. C. Schmidt, and J. Tuerk. 2016. “Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin.” J. Hazard. Mater. 313: 49–59. https://doi.org/10.1016/j.jhazmat.2016.03.010.
Segovia-Sandoval, S. J., L. M. Pastrana-Martínez, R. Ocampo-Pérez, S. Morales-Torres, M. S. Berber-Mendoza, and F. Carrasco-Marin. 2020. “Synthesis and characterization of carbon xerogel/graphene hybrids as adsorbents for metronidazole pharmaceutical removal: Effect of operating parameters.” Sep. Purif. Technol. 237: 116341. https://doi.org/10.1016/j.seppur.2019.116341.
Sherlala, A. I. A., A. A. A. Raman, M. M. Bello, and A. Buthiyappan. 2019. “Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite.” J. Environ. Manage. 246: 547–556. https://doi.org/10.1016/j.jenvman.2019.05.117.
Somathilake, P., J. A. Dominic, G. Achari, C. H. Langford, and J. H. Tay. 2018. “Use of low pressure mercury lamps with H2O2 and TiO2 for treating carbamazepine in drinking water: Batch and continuous flow through experiments.” J. Water Process Eng. 26: 230–236. https://doi.org/10.1016/j.jwpe.2018.10.015.
Subedi, B., K. Balakrishna, R. K. Sinha, N. Yamashita, V. G. Balasubramanian, and K. Kannan. 2015. “Mass loading and removal of pharmaceuticals and personal care products, including psychoactive and illicit drugs and artificial sweeteners, in five sewage treatment plants in India.” J. Environ. Chem. Eng. 3 (4): 2882–2891. https://doi.org/10.1016/j.jece.2015.09.031.
Travlou, N. A., G. Z. Kyzas, N. K. Lazaridis, and E. A. Deliyanni. 2013. “Graphite oxide/chitosan composite for reactive dye removal.” Chem. Eng. J. 217: 256–265. https://doi.org/10.1016/j.cej.2012.12.008.
Unlu, N., and M. Ersoz. 2006. “Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions.” J. Hazard. Mater. 136 (2): 272–280. https://doi.org/10.1016/j.jhazmat.2005.12.013.
Wang, F., B. Yang, H. Wang, Q. Song, F. Tan, and Y. Cao. 2016. “Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite.” J. Mol. Liq. 222: 188–194. https://doi.org/10.1016/j.molliq.2016.07.037.
Wang, X., S. Tao, and B. Xing. 2009. “Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes.” Environ. Sci. Technol. 43 (16): 6214–6219. https://doi.org/10.1021/es901062t.
Yu, F., Y. Li, S. Han, and J. Ma. 2016. “Adsorptive removal of antibiotics from aqueous solution using carbon materials.” Chemosphere 153: 365–385. https://doi.org/10.1016/j.chemosphere.2016.03.083.
Zhang, H., and C. H. Huang. 2007. “Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite.” Chemosphere 66 (8): 1502–1512. https://doi.org/10.1016/j.chemosphere.2006.08.024.
Zhang, C. L., G. L. Qiao, F. Zhao, and Y. Wang. 2011. “Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution.” J. Mol. Liq. 163 (1): 53–56. https://doi.org/10.1016/j.molliq.2011.07.005.
Zhao, Q., S. Zhang, X. Zhang, L. Lei, W. Ma, C. Ma, L. Song, J. Chen, B. Pan, and B. Xing. 2017. “Cation–Pi interaction: A key force for sorption of fluoroquinolone antibiotics on pyrogenic carbonaceous materials.” Environ. Sci. Technol. 51 (23): 13659–13667. https://doi.org/10.1021/acs.est.7b02317.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 27Issue 1January 2023

History

Received: Mar 15, 2022
Accepted: Jun 9, 2022
Published online: Oct 26, 2022
Published in print: Jan 1, 2023
Discussion open until: Mar 26, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Dinkar Parashar [email protected]
Research Scholar, Environmental and Water Resources Engineering Division, Dept. of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India. Email: [email protected]
Afrah Harafan [email protected]
Graduate Student, Environmental and Water Resources Engineering Division, Dept. of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India. Email: [email protected]
Gopal Achari [email protected]
Professor, Dept. of Civil Engineering, Univ. of Calgary, ENF 262, 2500 University Drive NW, Calgary, Canada T2N 1N4. Email: [email protected]
Associate Professor, Environmental and Water Resources Engineering Division, Dept. of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India (corresponding author). ORCID: https://orcid.org/0000-0002-4124-4605. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share