Technical Papers
Jun 12, 2021

Estimation of Exceedance Probability of Scour on Bridges Using Reliability Principles

This article has a reply.
VIEW THE REPLY
This article has a reply.
VIEW THE REPLY
Publication: Journal of Hydrologic Engineering
Volume 26, Issue 8

Abstract

Scour is one of the most relevant causes of bridge collapse. Most existing scour models have been focused on estimating scour depth as input for bridge design. This estimation is mainly deterministic. Parameter uncertainty has been considered to estimate expected scour as well. This framework is suitable for bridge design but has limitations for risk analysis of bridge networks, in which exceedance probabilities are needed. In this paper we use the first-order reliability method to estimate the probability that the actual scour will exceed the design scour, considering the uncertainty in hydraulic and hydrological parameters. The procedure was applied to a case study in Chile using the flood-flow history between 30 and 60 years of eight fluviometric stations. The local, contraction, and general scour were estimated for return periods between 2 and 500 years. The exceedance probability obtained was highly dependent on the uncertainty in annual maximum flow, Froude’s number, top width, and riverbed longitudinal slope.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data that support the findings of this study are available from the corresponding author upon reasonable request:
Shapefiles of fluviometric stations.
Maximum annual discharge per fluviometric station.
Digital elevation models.
Manning roughness.

Acknowledgments

Authors thank the National Research and Development Agency (ANID) of Chile for supporting the research presented in this article through the following research projects: CONICYT/FONDAP/15110017 project “National Research Center for Integrated Natural Disaster Management (CIGIDEN),” FONDEF ID14I20309 “Research and Development of Models to Quantify and Mitigate the Risk of Natural Hazards in the National Road Network,” and FONDECYT 1181754 “Socioeconomic Modelling of Mitigation Strategies for Resilient Critical Infrastructure: Application to Drinking Water Systems and Road Networks.”

References

Ansari, S. A., and A. Qadar. 1994. “Ultimate depth of scour around bridge piers.” In Proc., National Hydraulic Conf., 51–55. Reston, VA: ASCE.
Arneson, L. A., L. W. Zevenbergen, P. F. Lagasse, and P. E. Clopper. 2012. Evaluating scour at bridges. 4th ed. Washington, DC: Federal Highway Administration.
Barbe, D. E., J. F. Cruise, and V. P. Singh. 1992. “Probabilistic approach to local pier scour.” Trans. Res. Rec. 1350 (1): 28–33.
Barbetta, S., S. Camici, and T. Moramarco. 2017. “A reappraisal of bridge piers scour vulnerability: A case study in the Upper Tiber River basin (central Italy).” J. Flood Risk Manage. 10 (3): 283–300. https://doi.org/10.1111/jfr3.12130.
Bobée B., and F. Ashkar. 1988. “Review of statistical methods for estimating flood risk with special emphasis on the log Pearson type 3 distribution.” In Natural and Man-made Hazards Int. Symp., 357–367. Dordrecht, Netherlands: D. Reidel Publishing Company. https://doi.org/10.1007/978-94-009-1433-9_25.
Bolduc, L. C., P. Gardoni, and J. L. Briaud. 2008. “Probability of exceedance estimates for scour depth around bridge piers.” J. Geotech. Geoenviron. Eng. 134 (2): 175–184. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:2(175).
Brandimarte, L., and G. Di Baldassarre. 2012. “Uncertainty in design flood profiles derived by hydraulic modeling.” Hydrol. Res. 43 (6): 753–761. https://doi.org/10.2166/nh.2011.086.
Briaud, J. L., L. Brandimarte, J. Wang, and P. D’Odorico. 2007. “Probability of scour depth exceedance owing to hydrologic uncertainty.” Georisk 1 (2): 77–88. https://doi.org/10.1080/17499510701398844.
Briaud, J. L., P. Gardoni, and C. Yao. 2014. “Statistical, risk, and reliability analyses of bridge scour.” J. Geotech. Geoenviron. Eng. 140 (2): 04013011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000989.
Chang, F. E. M. 1973. A statistical summary of the cause and cost of bridge failures. Washington, DC: Federal Highway Administration.
Clarke, R. T. 1999. “Uncertainty in the estimation of mean annual flood due to rating-curve indefinition.” J. Hydrol. 222 (99): 185–190. https://doi.org/10.1016/S0022-1694(99)00097-9.
Cook, W., and P. J. Barr. 2017. “Observations and trends among collapsed bridges in New York State.” J. Perform. Constr. Facil. 31 (4): 04017011. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000996.
Cook, W., P. J. Barr, and M. W. Halling. 2015. “Bridge failure rate.” J. Perform. Constr. Facil. 29 (3): 04014080. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000571.
DGA (Dirección General de Aguas). 2017. “Información Oficial Hidrometeorológica y de Calidad de Aguas en Línea.” Accessed April 28, 2017. http://snia.dga.cl/BNAConsultas/reportes.
Farías, H., M. Pilán, L. A. Olmos, and F. J. Pece. 2008. “Erosión general en ríos aluviales.” Ing. agua 15 (2): 107–122. https://doi.org/10.4995/ia.2008.2930.
Froehlich, D. C. 1988. “Analysis of onsite measurements of scour at piers.” In Proc., 1988 National Conf. on Hydraulic Engineering, 534–539. Reston, VA: ASCE.
Froehlich, D. C. 1989. “Local scour at bridge abutments.” In Proc., 1989 National Conf. on Hydraulic Engineering, 13–18. Reston, VA: ASCE.
Gao, D., G. Posada, and C. F. Nordin. 1993. “Pier scour equations used in China.” In Hydraulic engineering, 1031–1036. Reston, VA: ASCE.
Gaudio, R., A. Tafarojnoruz, and S. De Bartolo. 2013. “Sensitivity analysis of bridge pier scour depth predictive formulae.” J. Hydroinf. 15 (3): 939–951. https://doi.org/10.2166/hydro.2013.036.
Ghaderi, A., R. Daneshfaraz, and M. Dasineh. 2019. “Evaluation and prediction of the scour depth of bridge foundations with HEC-RAS numerical model and empirical equations (Case Study: Bridge of Simineh Rood Miandoab, Iran).” Eng. J. 23 (6): 279–295. https://doi.org/10.4186/ej.2019.23.6.279.
Ghazvinei, P. T., H. H. Darvishi, J. Ariffin, S. H. Musavi Jahromi, N. Aghamohammadi, and A. Amini. 2017. “MTP validation analysis of scour formulae in an integral abutment bridge.” J. Civ. Eng. 21 (3): 1009–1021. https://doi.org/10.1007/s12205-016-0181-6.
Haldar, A., and S. Mahadevan. 2000. Probability, reliability and statistical methods in engineering design. 1st ed. New York: Wiley.
Han, B., H. B. Xie, L. Zhu, Y. Q. Wang, and H. Li. 2018. “Scour risk analysis of existing bridge pier based on inversion theory.” Struct. Eng. Int. 28 (1): 35–43. https://doi.org/10.1080/10168664.2018.1431396.
Hasofer, A. M., and N. C. Lind. 1974. “An exact and invariant first order reliability format.” J. Eng. Mech. Div. 100 (1): 111–121. https://doi.org/10.1061/JMCEA3.0001848.
Johnson, P. A. 1992. “Reliability-based pier scour engineering.” J. Hydraul. Eng. 118 (10): 1344–1358. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:10(1344).
Johnson, P. A., and D. A. Dock. 1998. “Probabilistic bridge scour estimates.” J. Hydraul. Eng. 124 (7): 750–754. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:7(750).
Kallias, A. N., and B. Imam. 2016. “Probabilistic assessment of local scour in bridge piers under changing environmental conditions.” Struct. Infrastruct. Eng. 12 (9): 1228–1241. https://doi.org/10.1080/15732479.2015.1102295.
Kameshwar, S., and J. E. Padgett. 2018. “Parameterized fragility assessment of bridges subjected to pier scour and vehicular loads.” J. Bridge Eng. 23 (7): 04018044. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001240.
Kamojjala, S., N. P. Gattu, A. C. Parola, and D. J. Hagerty. 1994. “Analysis of 1993 upper Mississippi flood highway infrastructure.” In Proc., First Int. Conf. on Water Resources Engineering, 1061–1065. Reston, VA: ASCE.
Khalid, M., M. Muzzammil, and J. Alam. 2019. “A reliability-based assessment of live bed scour at bridge piers.” J. Hydraul. Eng. 2019 (Mar): 1–8. https://doi.org/10.1080/09715010.2019.1584543.
Klinga, J. V., and A. Alipour. 2015. “Assessment of structural integrity of bridges under extreme scour conditions.” Eng. Struct. 82 (Jan): 55–71. https://doi.org/10.1016/j.engstruct.2014.07.021.
Ko, Y. Y., J. S. Chiou, Y. C. Tsai, C. H. Chen, H. Wang, and C. Y. Wang. 2014. “Evaluation of flood-resistant capacity of scoured bridges.” J. Perform. Constr. Facil. 28 (1): 16–75. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000381.
Lamb, R., W. Aspinall, H. Odbert, and T. Wagener. 2017. “Vulnerability of bridges to scour: Insights from an international expert elicitation workshop.” Nat. Hazards Earth Syst. Sci. 17 (8): 1393–1409. https://doi.org/10.5194/nhess-17-1393-2017.
Laursen, E. M. 1958. “The total sediment load of streams.” J. Hydraul. Div. 84 (1): 1–36. https://doi.org/10.1061/JYCEAJ.0000158.
Laursen, E. M. 1963. “Analysis of relief bridge scour.” J. Hydraul. Div. 89 (3): 93–118. https://doi.org/10.1061/JYCEAJ.0000896.
Liao, K. W., W. L. Chen, and B. H. Wu. 2018. “Reliability-based design optimization of a river bridge considering uncertainty in scours.” J. Perform. Constr. Facil. 32 (1): 04017118. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001118.
Liao, K. W., Y. Muto, W. L. Chen, and B. H. Wu. 2016. “A probabilistic bridge safety evaluation against floods.” Springerplus 5 (1): 783. https://doi.org/10.1186/s40064-016-2366-3.
Liao, K.-W., H.-J. Lu, and C. Y. Wang. 2015. “A probabilistic evaluation of pier-scour potential in the Gaoping River Basin of Taiwan.” J. Civ. Eng. Manage. 21 (5): 637–653. https://doi.org/10.3846/13923730.2014.890650.
Link, O., C. Castillo, A. Pizarro, A. Rojas, B. Ettmer, C. Escauriaza, and S. Manfreda. 2017. “A model of bridge pier scour during flood waves.” J. Hydraul. Res. 55 (3): 310–323. https://doi.org/10.1080/00221686.2016.1252802.
Liu, H. K., F. M. Chang, and M. M. Skinner. 1961. Effect of bridge construction on scour and backwater. Fort Collins, CO: Colorado State Univ.
López A., L. Ayala, and M. Sandoval. 1989. “Geometría hidráulica y sedimentos constituyentes de cauces torrenciales.” [In Spanish.] In Proc., IX Congreso Nacional de Ingeniería Hidráulica, 175–190. Santiago, Chile: Pontificia Universidad Católica de Chile Santiago.
May, R. W. P., and I. R. Willoughby. 1990. Local scour around large obstructions. Rep. No. SR240. Wallingford, UK: Hydraulics Research Wallingford.
Maza, J. A. 1967. “Erosión del cauce de un río en el cruce de un puente.” Ingeniería Hidráulica en México 20 (1–2): 93–106.
Melville, B. W. 1992. “Local scour at bridge abutments.” J. Hydraul. Eng. 118 (4): 615–631. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:4(615).
Melville, B. W. 1997. “Pier and abutment scour: Integrated approach.” J. Hydroaul Eng. 123 (2): 125–136. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(125).
Melville, B. W., and A. J. Sutherland. 1988. “Design method for local scour at bridge piers.” J. Hydraul. Eng. 114 (10): 1210–1226. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:10(1210).
Merz, B., and A. H. Thieken. 2005. “Separating natural and epistemic uncertainty in flood frequency analysis.” J. Hydrol. 309 (1–4): 114–132. https://doi.org/10.1016/j.jhydrol.2004.11.015.
Mitoulis, S. A., S. A. Argyroudis, and R. Lamb. 2019. Risk and resilience of bridgeworks exposed to hydraulic hazards. New York: International Association for Bridge and Structural Engineering.
Montalvo, C., W. Cook, and T. Keeney. 2017. “Retrospective analysis of hydraulic bridge collapse.” J. Perform. Constr. Facil. 34 (1): 04019111. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001378.
MOP (Ministerio de Obras Públicas de Chile). 2019. Manual de Carreteras Volumen N°3: Instrucciones y criterios de diseño [Highways Manual Volume N ° 3: Instructions and design criteria]. Santiago, Chile: Ministry of Public Works.
Muzzammil, M., and N. A. Siddiqui. 2009. “A reliability-based assessment of bridge pier scour in non-uniform sediments.” J. Hydraul. Res. 47 (3): 372–380. https://doi.org/10.1080/00221686.2009.9522008.
Park, C. W., H. Park, and Y. K. Cho. 2017. “Evaluation of the applicability of pier local scour formulae using laboratory and field data.” Marine Georesour. Geotech. 35 (1): 1–7. https://doi.org/10.1080/1064119X.2014.954658.
Pizarro, A., S. Manfreda, and E. Tubaldi. 2020. “The science behind scour at bridge foundations: A review.” Water 12 (2): 374. https://doi.org/10.3390/w12020374.
Qi, M., J. Li, and Q. Chen. 2016. “Comparison of existing equations for local scour at bridge piers: Parameter influence and validation.” Nat. Hazards 82 (3): 2089–2105. https://doi.org/10.1007/s11069-016-2287-z.
Qi, M., J. Li, and Q. Chen. 2018. “Applicability analysis of pier-scour equations in the field: Error analysis by rationalizing measurement data.” J. Hydraul. Eng. 144 (8): 04018050. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001497.
Richardson, E. V., and S. R. Davis. 2001. Evaluating scour at bridges. 4th ed. Washington, DC: Federal Highway Administration.
Rosenblatt, M. 1952. “Remarks on a multivariate transformation.” Ann. Math. Stat. 23 (3): 470–472. https://doi.org/10.1214/aoms/1177729394.
Shan, H., R. Kilgore, J. Shen, and K. Kerenyi. 2016. Updating HEC-18 pier scour equations for noncohesive soils. Washington, DC: Federal Highway Administration.
Sheppard, D. M., B. Melville, and H. Demir. 2014. “Evaluation of existing equations for local scour at bridge piers.” J. Hydraul. Eng. 140 (8): 14–23. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000800.
Sheppard, D. M., and W. Miller. 2006. “Live-bed local pier scour experiments.” J. Hydraul. Eng. 132 (7): 635–642. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:7(635).
Sheppard, D. M., M. Odeh, and T. Glasser. 2004. “Large scale clear-water local pier scour experiments.” J. Hydraul. Eng. 130 (10): 957–963. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:10(957).
Sturm, T. W., R. Ettema, and B. W. Melville. 2011. Evaluation of bridge-scour research: Abutment and contraction scour processes and prediction. Washington, DC: National Cooperative Highway Research Program.
Timbe Castro, L. M., and P. Willems. 2011. “Desempeño de modelos hidráulicos 1D y 2D para la simulación de inundaciones.” Maskana 2 (1): 91–98. https://doi.org/10.18537/mskn.02.01.07.
Valenzuela, S., H. de Solminihac, and T. Echaveguren. 2010. “Proposal of an integrated index for prioritization of bridge maintenance.” J. Bridge Eng. 15 (3): 337–343. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000068.
Wang, C., X. Yu, and F. Liang. 2017. “A review of bridge scour: Mechanism, estimation, monitoring and countermeasures.” Nat. Hazards 87 (3): 1881–1906. https://doi.org/10.1007/s11069-017-2842-2.
Williams, P., T. Bolisetti, and R. Balachandar. 2017. “Evaluation of governing parameters on pier scour geometry.” Can. J. Civ. Eng. 44 (1): 48–58. https://doi.org/10.1139/cjce-2016-0133.
Williams, P., T. Bolisetti, and R. Balachandar. 2018. “Blockage correction for pier scour experiments.” Can. J. Civ. Eng. 45 (6): 1–5. https://doi.org/10.1139/cjce-2017-0563.
Wilson, K. V. 1995. Scour at selected bridge sites in Mississippi. Reston, VA: ASCE.
Yang, D. Y., and D. M. Frangopol. 2019. “Physics-based assessment of climate change impact on long-term regional bridge scour risk using hydrologic modeling: Application to Lehigh river watershed.” J. Bridge Eng. 24 (11): 04019099. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001462.
Yanmaz, A. M. 2000. “Overtopping risk assessment in river diversion facility design.” Can. J. Civ. Eng. 27 (2): 319–326. https://doi.org/10.1139/l99-074.
Yanmaz, A. M., and T. Çelebi. 2004. “A reliability model for bridge abutment scour.” Turkish J. Eng. Environ. Sci. 28 (1): 67–83.
Yuan, L. F., S. A. Argyorouidis, E. Tubaldi, M. Pregnolato, and S. A. Mitoulis. 2019. “Fragility of bridges exposed to multiple hazards and impact on transport network resilience.” In Proc., 2019 SECED Conf., Earthquake Risk and Engineering Towards a Resilient World, 9–10. London: Society for Earthquake and Civil Engineering Dynamics.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 26Issue 8August 2021

History

Received: Apr 27, 2020
Accepted: Mar 24, 2021
Published online: Jun 12, 2021
Published in print: Aug 1, 2021
Discussion open until: Nov 12, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Manuel Contreras-Jara
CEng.
Researcher, Dept. of Civil Engineering, Faculty of Engineering, Universidad de Concepción, Edmundo Larenas, 219, Concepción 4070409, Chile; National Research Center for Integrated Natural Disaster Management (CIGIDEN), ANID/FONDAP/15110017, Avda. Vicuña Mackenna 4860, Santiago 7820244, Chile.
Associate Professor, Dept. of Civil Engineering, Faculty of Engineering, Universidad de Concepción, Edmundo Larenas, 219, Concepción 4070409, Chile; Associate Investigator, National Research Center for Integrated Natural Disaster Management (CIGIDEN), ANID/FONDAP/15110017, Avda. Vicuña Mackenna 4860, Santiago 7820244, Chile (corresponding author). ORCID: https://orcid.org/0000-0003-1632-5988. Email: [email protected]
Alondra Chamorro, Ph.D.
Associate Profesor, Pontificia Universidad Católica de Chile, School of Engineering, Dept. of Construction Engineering and Management, Santiago, Chile; Principal Investigator, National Research Center for Integrated Natural Disaster Management (CIGIDEN), ANID/FONDAP/15110017, Avda. Vicuña Mackenna 4860, Santiago 7820244, Chile.
Jose Vargas-Baecheler, Ph.D.
Associate Professor, Dept. of Civil Engineering, Faculty of Engineering, Universidad de Concepción, Edmundo Larenas, 219, Concepción 4070409, Chile.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • A bridge scour risk management approach to deal with uncertain climate future, Transportation Research Part D: Transport and Environment, 10.1016/j.trd.2022.103567, 114, (103567), (2023).
  • Framework for a reliability-based analysis of local scour and its effect on pile response in clay, Computers and Geotechnics, 10.1016/j.compgeo.2022.105093, 153, (105093), (2023).
  • Stochastic Assessment of Scour Hazard, Water, 10.3390/w14030273, 14, 3, (273), (2022).
  • Frequency analysis of extreme scour depths at bridge piers and their contribution to bridge collapse risk, Hydrological Sciences Journal, 10.1080/02626667.2022.2122718, 67, 13, (2029-2041), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share