Technical Papers
May 27, 2021

Stress-Displacement Response of Sand–Geosynthetic Interfaces under Different Volume Change Boundary Conditions

This article has a reply.
VIEW THE REPLY
This article has a reply.
VIEW THE REPLY
Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 147, Issue 8

Abstract

Volume change boundary conditions might dictate significant changes in normal stress and, accordingly, dramatically affect the stress-displacement response of soil-structure interfaces. Using a Norwegian Geotechnical Institute-type direct simple shear (NGI-DSS) apparatus, a series of tests covering a wide range for normal stiffness, initial normal stress, and sand relative density values was performed on interfaces between sand and two different types of geosynthetics. The experimental data presented indicate that the peak and ultimate shear strengths of the dense and medium-dense sand–geosynthetic interfaces increase as the initial normal stress and constant normal stiffness are increased. In contrast, the loose sand–geosynthetic interfaces exhibit a decrease in the peak and residual post-peak shear strengths with increasing normal stiffness because of the sand contraction. A state-dependent elastic-plastic constitutive model is found to capture the influence of various volume change boundary conditions on the mechanical behavior of sand–geosynthetic interfaces.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors acknowledge the technical support of the Global MTM Company concerning the DSS interface apparatus. The authors also express their gratitude to Narvin-Gostar-Parsian Co., Kia-Pars-Layer, and Behinesazan Sajad Co. for providing the geotextile and geomembrane used in this study.

References

Afzali-Nejad, A., A. Lashkari, and B. Farhadi. 2018. “Role of soil inherent anisotropy in peak friction and maximum dilation angles of four sand–geosynthetic interfaces.” Geotext. Geomembr. 46 (6): 869–881. https://doi.org/10.1016/j.geotexmem.2018.08.003.
Afzali-Nejad, A., A. Lashkari, and P. T. Shourijeh. 2017. “Influence of particle shape on the shear strength and dilation of sand-woven geotextile interfaces.” Geotext. Geomembr. 45 (1): 54–66. https://doi.org/10.1016/j.geotexmem.2016.07.005.
Anubhav, and P. K. Basudhar. 2010. “Modeling of soil-woven geotextile interface behavior from direct shear test results.” Geotext. Geomembr. 28 (4): 403–408. https://doi.org/10.1016/j.geotexmem.2009.12.005.
ASTM. 2017. Standard practice for classification of soils for engineering purposes (Unified soil classification system) 1. ASTM Committee D-18. West Conshohocken, PA: ASTM.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Bove, J. A. 1990. “Direct shear friction testing for geosynthetics in waste containment.” In Geosynthetic testing for waste containment applications. West Conshohocken, PA: ASTM.
DeJong, J. T., M. F. Randolph, and D. J. White. 2003. “Interface load transfer degradation during cyclic loading: A microscale investigation.” Soils Found. 43 (4): 81–93. https://doi.org/10.3208/sandf.43.4_81.
DeJong, J. T., and Z. J. Westgate. 2009. “Role of initial state, material properties, and confinement condition on local and global soil-structure interface behavior.” J. Geotech. Geoenviron. Eng. 135 (11): 1646–1660. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:11(1646).
DeJong, J. T., D. J. White, and M. F. Randolph. 2006. “Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry.” Soils Found. 46 (1): 15–28. https://doi.org/10.3208/sandf.46.15.
Dove, J. E., and J. D. Frost. 1999. “Peak friction behavior of smooth geomembrane-particle interfaces.” J. Geotech. Geoenviron. Eng. 125 (7): 544–555. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:7(544).
Dove, J. E., J. D. Frost, R. C. Bachus, and J. Han. 1997. “The influence of geomembrane surface roughness on interface strength.” In Vol. 97 of Proc., Geosynthetics, 863–876. Long Beach, CA: Industrial Fabric Association International.
Evgin, E., and K. Fakharian. 1997. “Effect of stress paths on the behavior of sand steel interfaces.” Can. Geotech. J. 33 (6): 853–865. https://doi.org/10.1139/t96-116-336.
Fakharian, K., and N. Vafaei. 2020. “Effect of density on skin friction response of piles embedded in sand by simple shear interface tests.” Can. Geotech. J. https://doi.org/10.1139/cgj-2019-0243.
Farhadi, B., and A. Lashkari. 2017. “Influence of soil inherent anisotropy on behavior of crushed sand-steel interfaces.” Soils Found. 57 (1): 111–125. https://doi.org/10.1016/j.sandf.2017.01.008.
Feng, D. K., J. M. Zhang, and L. J. Deng. 2018a. “Three-dimensional monotonic and cyclic behavior of a gravel–steel interface from large-scale simple-shear tests.” Can. Geotech. J. 55 (11): 1657–1667. https://doi.org/10.1139/cgj-2018-0065.
Feng, D. K., J. M. Zhang, and W. J. Hou. 2018b. “Three-dimensional direct-shear behaviors of a gravel-structure interface.” J. Geotech. Geoenviron. Eng. 144 (12): 04018095. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001968.
Feng, S. J., S. G. Ai, and H. X. Chen. 2018c. “Membrane effect of geosynthetic reinforcement subjected to localized sinkholes.” Can. Geotech. J. 55 (9): 1334–1348. https://doi.org/10.1139/cgj-2017-0592.
Feng, S. J., J. N. Chen, H. X. Chen, X. Liu, T. Zhao, and A. Zhou. 2020. “Analysis of sand–woven geotextile interface shear behavior using discrete element method (DEM).” Can. Geotech. J. 57 (3): 433–447. https://doi.org/10.1139/cgj-2018-0703.
Ferreira, F. B., C. S. Vieira, and M. Lopes. 2015. “Direct shear behavior of residual soil-geosynthetic interfaces-influence of soil moisture content, soil density and geosynthetic type.” Geosynth. Int. 22 (3): 257–272. https://doi.org/10.1680/gein.15.00011.
Fioravante, V. 2002. “On the shaft friction modelling of non-displacement piles in sand.” Soils Found. 42 (2): 23–33. https://doi.org/10.3208/sandf.42.2_23.
Frost, J. D., and J. Han. 1999. “Behavior of interfaces between fiber-reinforced polymers and sands.” J. Geotech. Geoenviron. Eng. 125 (8): 633–640. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:8(633).
Frost, J. D., and T. Karademir. 2016. “Shear-induced changes in smooth geomembrane surface topography at different ambient temperatures.” Geosynth. Int. 23 (2): 113–128. https://doi.org/10.1680/jgein.15.00036.
Goodhue, M. J., T. B. Edil, and C. H. Benson. 2001. “Interaction of foundry sands with geosynthetics.” J. Geotech. Geoenviron. Eng. 127 (4): 353–362. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(353).
Han, F., E. Ganju, R. Salgado, and M. Prezzi. 2018. “Effects of interface roughness, particle geometry, and gradation on the sand–steel interface friction angle.” J. Geotech. Geoenviron. Eng. 144 (12): 04018096. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001990.
Hegde, A. M., and T. G. Sitharam. 2015. “Experimental and numerical studies on protection of buried pipelines and underground utilities using geocells.” Geotext. Geomembr. 43 (5): 372–381. https://doi.org/10.1016/j.geotexmem.2015.04.010.
Ishihara, K. 1993. “Liquefaction and flow failure during earthquake.” Géotechnique 43 (3): 351–451. https://doi.org/10.1680/geot.1993.43.3.351.
Kadhim, S. T., R. L. Parsons, and J. Han. 2018. “Three-dimensional numerical analysis of individual geotextile-encased sand columns with surrounding loose sand.” Geotext. Geomembr. 46 (6): 836–847. https://doi.org/10.1016/j.geotexmem.2018.08.002.
Kishida, H., and M. Uesugi. 1987. “Tests of the interface between sand and steel in the simple shear apparatus.” Géotechnique 37 (1): 45–52. https://doi.org/10.1680/geot.1987.37.1.45.
Lashkari, A. 2013. “Prediction of the shaft resistance of non-displacement piles in sand.” Int. J. Numer. Anal. Methods Geomech. 37 (8): 904–931. https://doi.org/10.1002/nag.1129.
Lashkari, A., and V. Jamali. 2021. “Global and local sand–geosynthetic interface behavior.” Géotechnique 71 (4): 346–367. https://doi.org/10.1680/jgeot.19.P.109.
Lashkari, A., and M. Kadivar. 2016. “A constitutive model for unsaturated soil–structure interfaces.” Int. J. Numer. Anal. Methods Geomech. 40 (2): 207–234. https://doi.org/10.1002/nag.2392.
Lee, K. M., and V. R. Manjunath. 2000. “Soil-geotextile interface friction by direct shear tests.” Can. Geotech. J. 37 (1): 238–252. https://doi.org/10.1139/t99-124.
Lings, M. L., and M. S. Dietz. 2005. “The peak strength of sand-steel interfaces and the role of dilation.” Soils Found. 45 (6): 1–14. https://doi.org/10.3208/sandf.45.1.
Liu, H., and H. I. Ling. 2008. “Constitutive description of interface behavior including cyclic loading and particle breakage within the framework of critical state soil mechanics.” Int. J. Numer. Anal. Methods Geomech. 32 (12): 1495–1514. https://doi.org/10.1002/nag.682.
Liu, H., E. Song, and H. I. Ling. 2006. “Constitutive modeling of soil-structure interface through the concept of critical state soil mechanics.” Mech. Res. Commun. 33 (4): 515–531. https://doi.org/10.1016/j.mechrescom.2006.01.002.
Lopes, M. L., and R. Silvano. 2010. “Soil/geotextile interface behavior in direct shear and pullout movements.” Geotech. Geol. Eng. 28 (6): 791–804. https://doi.org/10.1007/s10706-010-9339-z.
Markou, I. N. 2018. “A Study on geotextile-sand interface behavior based on direct shear and triaxial compression tests.” Int. J. Geosynth. Ground Eng. 4 (1): 8. https://doi.org/10.1007/s40891-017-0121-7.
Markou, I. N., and E. D. Evangelou. 2018. “Shear resistance characteristics of soil-geomembrane interfaces.” Int. J. Geosynth. Ground Eng. 4 (4): 29. https://doi.org/10.1007/s40891-018-0146-6.
Martinez, A., and J. D. Frost. 2017a. “Particle scale effects on global axial and torsional interface shear behavior.” Int. J. Numer. Anal. Methods Geomech. 41 (3): 400–421. https://doi.org/10.1002/nag.2564.
Martinez, A., and J. D. Frost. 2017b. “The influence of surface roughness form on the strength of sand–structure interfaces.” Géotechnique Lett. 7 (1): 104–111. https://doi.org/10.1680/jgele.16.00169.
Martinez, A., and J. D. Frost. 2018. “Undrained behavior of sand-structure interfaces subjected to cyclic torsional shearing.” J. Geotech. Geoenviron. Eng. 144 (9): 04018063. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001942.
Martinez, A., J. D. Frost, and G. L. Hebeler. 2015. “Experimental study of shear zones formed at sand/steel interfaces in axial and torsional axisymmetric tests.” Geotech. Test. J. 38 (4): 409–426. https://doi.org/10.1520/GTJ20140266.
Martinez, A., and H. H. Stutz. 2019. “Rate effects on the interface shear behavior of normally and overconsolidated clay.” Géotechnique 69 (9): 801–815. https://doi.org/10.1680/jgeot.17.P.311.
Mohapatra, S. R., K. Rajagopal, and J. Sharma. 2016. “Direct shear tests on geosynthetic-encased granular columns.” Geotext. Geomembr. 44 (3): 396–405. https://doi.org/10.1016/j.geotexmem.2016.01.002.
Mohapatra, S. R., K. Rajagopal, and J. Sharma. 2017. “3-Dimensional numerical modeling of geosynthetic-encased granular columns.” Geotext. Geomembr. 45 (3): 131–141. https://doi.org/10.1016/j.geotexmem.2017.01.004.
Mortara, G., M. Boulon, and V. N. Ghionna. 2002. “A 2-D constitutive model for cyclic interface behavior.” Int. J. Numer. Anal. Methods Geomech. 26 (11): 1071–1096. https://doi.org/10.1002/nag.236.
Palmeira, E. M. 2009. “Soil-geosynthetic interaction: Modelling and analysis.” Geotext. Geomembr. 27 (5): 368–390. https://doi.org/10.1016/j.geotexmem.2009.03.003.
Porcino, D., V. Fioravante, V. N. Ghionna, and S. Pedroni. 2003. “Interface behavior of sands from constant normal stiffness direct shear tests.” Geotech. Test. J. 26 (3): 1–13. https://doi.org/10.1520/GTJ11308J.
Portelinha, F. H. M., J. G. Zornberg, and V. Pimentel. 2014. “Field performance of retaining walls reinforced with woven and nonwoven geotextiles.” Geosynth. Int. 21 (4): 270–284. https://doi.org/10.1680/gein.14.00014.
Pulko, B., B. Majes, and J. Logar. 2011. “Geosynthetic-encased stone columns: Analytical calculation model.” Geotext. Geomembr. 29 (1): 29–39. https://doi.org/10.1016/j.geotexmem.2010.06.005.
Su, L. J., W. H. Zhou, W. B. Chen, and X. Jie. 2018. “Effects of relative roughness and mean particle size on the shear strength of sand-steel interface.” Measurement 122 (Jul): 339–346. https://doi.org/10.1016/j.measurement.2018.03.003.
Uesugi, M., and H. Kishida. 1986. “Influential factors of friction between steel and dry sands.” Soils Found. 26 (2): 33–46. https://doi.org/10.3208/sandf1972.26.2_33.
Uesugi, M., H. Kishida, and Y. Tsubakihara. 1989. “Friction between sand and steel under repeated loading.” Soils Found. 29 (3): 127–137. https://doi.org/10.3208/sandf1972.29.3_127.
Vangla, P., and M. L. Gali. 2016a. “Effect of particle size of sand and surface asperities of reinforcement on their interface shear behavior.” Geotext. Geomembr. 44 (3): 254–268. https://doi.org/10.1016/j.geotexmem.2015.11.002.
Vangla, P., and M. L. Gali. 2016b. “Shear behavior of sand-smooth geomembrane interfaces through micro-topographical analysis.” Geotext. Geomembr. 44 (4): 592–603. https://doi.org/10.1016/j.geotexmem.2016.04.001.
Vangla, P., and G. M. Latha. 2015. “Influence of particle size on the friction and interfacial shear strength of sands of similar morphology.” Int. J. Geosynth. Ground Eng. 1 (1): 6. https://doi.org/10.1007/s40891-014-0008-9.
Wang, J., S. Liu, and Y. P. Cheng. 2017. “Role of normal boundary condition in interface shear test for the determination of skin friction along pile shaft.” Can. Geotech. J. 54 (9): 1245–1256. https://doi.org/10.1139/cgj-2016-0312.
Wu, C. S., and Y. S. Hong. 2009. “Laboratory tests on geosynthetic-encapsulated sand columns.” Geotext. Geomembr. 27 (2): 107–120. https://doi.org/10.1016/j.geotexmem.2008.09.003.
Yoo, C., and Q. Abbas. 2020. “Laboratory investigation of the behavior of a geosynthetic encased stone column in sand under cyclic loading.” Geotext. Geomembr. 48 (4): 431–442. https://doi.org/10.1016/j.geotexmem.2020.02.002.
Zettler, T. E., J. D. Frost, and J. T. DeJong. 2000. “Shear-induced changes in smooth HDPE geomembrane surface topography.” Geosynth. Int. 7 (3): 243–267. https://doi.org/10.1680/gein.7.0174.
Zhang, L., and M. Zhao. 2015. “Deformation analysis of geotextile-encased stone columns.” Int. J. Geomech. 15 (3): 04014053. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000389.
Zhou, Y., and G. Kong. 2019. “Deformation analysis of a geosynthetic-encased stone column and surrounding soil using cavity-expansion model.” Int. J. Geomech. 19 (5): 04019036. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001418.
Zhou, Y., G. Kong, Q. Yang, and H. Li. 2019. “Deformation analysis of geosynthetic-encased stone column using cavity expansion models with emphasis on boundary condition.” Geotext. Geomembr. 47 (6): 831–842. https://doi.org/10.1016/j.geotexmem.2019.103498.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 8August 2021

History

Received: May 29, 2020
Accepted: Mar 4, 2021
Published online: May 27, 2021
Published in print: Aug 1, 2021
Discussion open until: Oct 27, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Shiraz Univ. of Technology, Shiraz, Iran; Research Scholar, Dept. of Civil and Environmental Engineering, Univ. of California Davis, Davis, CA 95616 (corresponding author). ORCID: https://orcid.org/0000-0001-9167-9976. Email: [email protected]; [email protected]
Ali Lashkari, Ph.D. [email protected]
Professor, Dept. of Civil and Environmental Engineering, Shiraz Univ. of Technology, P.O. Box 71555-313, Shiraz, Iran. Email: [email protected]
Assistant Professor, Dept. of Civil and Environmental Engineering, Univ. of California Davis, Davis, CA 95616. ORCID: https://orcid.org/0000-0003-4649-925X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Role of Tangential Displacement Amplitude in 3D Cyclic Simple Shear Behavior of Gravel–Steel Interface, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-9547, 24, 9, (2024).
  • An Apparatus for Determining Micromechanical Interface Shear Properties of Geomaterial Contacts, Journal of Testing and Evaluation, 10.1520/JTE20220484, 51, 4, (20220484), (2023).
  • Durability against Wetting and Drying Cycles and Installation Damage of Water Hyacinth Geotextiles Coated with Natural Rubber Latex, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-15721, 35, 11, (2023).
  • Effect of gas-oil contamination on the mechanical behavior of sand-woven geotextile interface: Experimental investigation and constitutive modeling, Geotextiles and Geomembranes, 10.1016/j.geotexmem.2023.03.004, (2023).
  • Change pattern of geomembrane surface roughness for geotextile/textured geomembrane interfaces, Geotextiles and Geomembranes, 10.1016/j.geotexmem.2022.09.009, 51, 1, (88-99), (2023).
  • A Machine Learning Architecture Replacing Heavy Instrumented Laboratory Tests: In Application to the Pullout Capacity of Geosynthetic Reinforced Soils, Sensors, 10.3390/s22228699, 22, 22, (8699), (2022).
  • Geogrid-soil interaction: experimental analysis of factors influencing load transfer, Geosynthetics International, 10.1680/jgein.21.00110, (1-22), (2022).
  • A Novel Multifunctional Ring Shear Apparatus for Investigating the Interface Strength Characteristics of Liner Systems, Geotechnical Testing Journal, 10.1520/GTJ20220031, 46, 1, (20220031), (2022).
  • Effect of fractal dimension on sand-geosynthetic interface shear strength, Powder Technology, 10.1016/j.powtec.2022.117349, 401, (117349), (2022).
  • Analytical solution for calculation of pull out force-deformation of geosynthetics reinforcing unsaturated soils, Geotextiles and Geomembranes, 10.1016/j.geotexmem.2021.12.005, 50, 2, (357-369), (2022).
  • See more

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share