Technical Papers
Apr 18, 2022

Multiaxial Damage Ratio Strength Criteria for Fiber-Reinforced Concrete

Publication: Journal of Engineering Mechanics
Volume 148, Issue 7

Abstract

Based on the damage ratio strength theory, a dimensionless damage ratio strength criterion for fiber-reinforced concrete (FRC) under true triaxial stress states was established under the assumption of small strains. Based on the experimental data of steel fiber–reinforced concrete (SFRC), polypropylene fiber–reinforced concrete (PFRC), hybrid fiber–reinforced concrete (HFRC), and steel fiber–reinforced high-performance lightweight concrete (SFRHLC), parameters for the damage ratio criterion were recommended. The damage ratio values were verified by SFRC experimental results under uniaxial, biaxial, and triaxial loading conditions, and the damage ratio values of SFRC under uniaxial tension, uniaxial compression, and biaxial equal compression stress conditions were compared with those of plain concrete. The true triaxial damage ratio strength criterion can be reduced to the conventional triaxial criterion and biaxial criterion, and the corresponding simplified strength criteria were proposed. The proposed dimensionless six-parameter criterion agrees well with the experimental results of the aforementioned materials for true triaxial, conventional triaxial, and biaxial loading conditions. Compared with the strength criteria in other studies, the proposed criterion can accurately represent the strength characteristics of FRC.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This research work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51978664 and 11972379) and Science Fund for Distinguished Young Scholars of Hunan (Grant No. 2019JJ20029).

References

Ahmad, J., F. Aslam, R. Martinez-Garcia, J. de Prado-Gil, N. Abbas, and M. H. El Ouni. 2021. “Mechanical performance of concrete reinforced with polypropylene fibers (PPFs).” J. Eng. Fibers Fabr. 16 (Dec): 15589250211060399. https://doi.org/10.1177/15589250211060399.
Babanajad, S. K., Y. Farnam, and M. Shekarchi. 2012. “Failure criteria and triaxial behaviour of HPFRC containing high reactivity metakaolin and silica fume.” Constr. Build. Mater. 29 (Apr): 215–229. https://doi.org/10.1016/j.conbuildmat.2011.08.094.
Babavalian, A., A. H. Ranjbaran, and S. Shahbeyk. 2020. “Uniaxial and triaxial failure strength of fiber reinforced EPS concrete.” Constr. Build. Mater. 247 (Jun): 118617. https://doi.org/10.1016/j.conbuildmat.2020.118617.
Balanji, E. K. Z., M. N. Sheikh, and M. N. S. Hadi. 2017. “Behaviour of high strength concrete reinforced with different types of steel fibres.” Aust. J. Struct. Eng. 18 (4): 254–261. https://doi.org/10.1080/13287982.2017.1396871.
Barragan, B. E., R. Gettu, M. A. Martin, and R. L. Zerbino. 2003. “Uniaxial tension test for steel fibre reinforced concrete––A parametric study.” Cem. Concr. Compos. 25 (7): 767–777. https://doi.org/10.1016/S0958-9465(02)00096-3.
Cao, Q., X. R. Lv, Z. M. Wu, C. J. Zhou, and X. C. Wang. 2021. “Failure criteria and constitutive model of polypropylene fiber–reinforced expansive self-consolidating concrete under biaxial loading.” J. Mater. Civ. Eng. 33 (12): 04021371. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004006.
Cheng, Q. G., L. B. Gao, Y. X. Xu, and S. H. Wu. 1999. Steel fiber reinforced concrete strength theory and its application. [In Chinese.] Beijing: China Railway Publishing House.
Chern, J. C., H. J. Yang, and H. W. Chen. 1993. “Behavior of steel fiber reinforced concrete in multiaxial loading.” ACI Mater. J. 89 (1): 32–40.
Chi, Y., L. H. Xu, G. D. Mei, N. Hu, and J. Su. 2014a. “A unified failure envelope for hybrid fibre reinforced concrete subjected to true triaxial compression.” Compos. Struct. 109 (Mar): 31–40. https://doi.org/10.1016/j.compstruct.2013.10.054.
Chi, Y., L. H. Xu, and H. S. Yu. 2014b. “Plasticity model for hybrid fiber-reinforced concrete under true triaxial compression.” J. Eng. Mech. 140 (2): 393–405. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000659.
Chi, Y., L. H. Xu, and Y. Y. Zhang. 2014c. “Experimental study on hybrid fiber-reinforced concrete subjected to uniaxial compression.” J. Mater. Civ. Eng. 26 (2): 211–218. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000764.
Das, S., M. H. R. Sobuz, V. W. Y. Tam, A. M. Akid, N. M. Sutan, and F. M. M. Rahman. 2020. “Effects of incorporating hybrid fibres on rheological and mechanical properties of fibre reinforced concrete.” Constr. Build. Mater. 262 (Nov): 120561. https://doi.org/10.1016/j.conbuildmat.2020.120561.
Ding, F. X., X. Wu, P. Xiang, and Z. W. Yu. 2021. “New damage ratio strength criterion for concrete and lightweight aggregate concrete.” ACI Struct. J. 118 (6): 165–178. https://doi.org/10.14359/51732989.
Ding, F. X., X. Wu, P. Xiang, Z. W. Yu, and C. J. Gong. 2020. “Reviews on strength theories of concrete and isotropic rock.” [In Chinese.] Eng. Mech. 49 (2): 1–15. https://doi.org/10.3901/JME.2013.02.001.
Dong, Y. L., C. M. Fan, and J. L. Pan. 1993. “Study on biaxial failure criteria of SFRC.” [In Chinese.] J. Harbin Univ. Civ. Eng. Archit. 26 (6): 69–73.
El-Helou, R. G., I. Koutromanos, C. D. Moen, and M. Moharrami. 2020. “Triaxial constitutive law for ultra-high-performance concrete and other fiber-reinforced cementitious materials.” J. Eng. Mech. 146 (7): 04020062. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001777.
Erdem, T. K., S. Demirhan, G. Yildirim, Q. S. Banyhussan, O. Sahin, M. H. Balav, and M. Sahmaran. 2020. “Effects of mixture design parameters on the mechanical behavior of high-performance fiber-reinforced concretes.” J. Mater. Civ. Eng. 32 (12): 04020368. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003459.
Fu, Q., W. R. Xu, J. Q. He, L. Su, H. Song, and D. T. Niu. 2021. “Dynamic strength criteria for basalt fibre-reinforced coral aggregate concrete.” Compos. Commun. 28 (Dec): 100983. https://doi.org/10.1016/j.coco.2021.100983.
Guo, B. C., X. S. Lin, Y. F. Wu, and L. H. Zhang. 2022. “Evaluation of flexural resistance of compression yielded concrete beams reinforced with fibre reinforced polymers.” Eng. Struct. 250 (Jan): 113416. https://doi.org/10.1016/j.engstruct.2021.113416.
Guo, Z. H., and C. Z. Wang. 1991. “Investigation of strength and failure criterion of concrete under multi-axial stresses.” [In Chinese.] China Civ. Eng. J. 24 (3): 1–14. https://doi.org/10.15951/j.tmgcxb.1991.03.001.
Holschemacher, K., T. Mueller, and Y. Ribakov. 2010. “Effect of steel fibres on mechanical properties of high-strength concrete.” Mater. Des. 31 (5): 2604–2615. https://doi.org/10.1016/j.matdes.2009.11.025.
Hu, X. D., R. Day, and P. Dux. 2003. “Biaxial failure model for fiber reinforced concrete.” J. Mater. Civ. Eng. 15 (6): 609–615. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:6(609).
Liu, X. L., S. F. Liu, and B. D. Qin. 2013. “Experimental study on strength and deformation feature of hybrid fiber high-strength concrete under conventional triaxial compression.” [In Chinese.] J. Henan Polytech. Univ. 32 (2): 225–229. https://doi.org/10.16186/j.cnki.1673-9787.2013.02.015.
Lu, X. B., and C. T. T. Hsu. 2006. “Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression.” Cem. Concr. Res. 36 (9): 1679–1685. https://doi.org/10.1016/j.cemconres.2006.05.021.
Mohamed, R. N., N. F. Zamri, K. S. Elliott, A. B. A. Rahman, and N. Bakhary. 2019. “Steel fibre self-compacting concrete under biaxial loading.” Constr. Build. Mater. 224 (Nov): 255–265. https://doi.org/10.1016/j.conbuildmat.2019.07.076.
Noori, A., M. Shekarchi, M. Moradian, and M. Moosavi. 2015. “Behavior of steel fiber-reinforced cementitious mortar and high-performance concrete in triaxial loading.” ACI Mater. J. 112 (1): 95–103. https://doi.org/10.14359/51686837.
Pantazopoulou, S. J., and M. Zanganeh. 2001. “Triaxial tests of fibre-reinforced concrete.” J. Mater. Civ. Eng. 13 (5): 340–348. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:5(340).
Ren, G. M., H. Wu, Q. Fang, and J. Z. Liu. 2016. “Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses.” Constr. Build. Mater. 113 (Jun): 1–14. https://doi.org/10.1016/j.conbuildmat.2016.02.227.
Simwanda, L., N. De Koker, and C. Viljoen. 2021. “Structural reliability of ultra high-performance fibre reinforced concrete beams in flexure.” Eng. Struct. 244 (Oct): 112767. https://doi.org/10.1016/j.engstruct.2021.112767.
Singh, N. K., and B. Rai. 2018. “A review of fiber synergy in hybrid fiber reinforced concrete.” J. Appl. Eng. Sci. 8 (2): 41–50. https://doi.org/10.2478/jaes-2018-0017.
Song, P. S., and S. Hwang. 2004. “Mechanical properties of high-strength steel fiber-reinforced concrete.” Constr. Build. Mater. 18 (9): 669–673. https://doi.org/10.1016/j.conbuildmat.2004.04.027.
Song, Y. P., G. F. Zhao, F. Peng, and B. L. Hu. 1996. “General failure criterion for different concrete materials under multiaxial stresses.” [In Chinese.] China Civ. Eng. J. 29 (1): 25–32. https://doi.org/10.15951/j.tmgcxb.1996.01.003.
Song, Y. P., G. F. Zhao, F. Peng, C. K. Huang, B. L. Hu, and J. N. Shen. 1994. “Strength behavior and failure criterion of steel fiber concrete under triaxial stresses.” [In Chinese.] China Civ. Eng. J. 27 (3): 14–23. https://doi.org/10.15951/j.tmgcxb.1994.03.002.
Sorelli, L. G., A. Meda, and G. A. Plizzari. 2005. “Bending and uniaxial tensile tests on concrete reinforced with hybrid steel fibers.” J. Mater. Civ. Eng. 17 (5): 519–527. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(519).
Swaddiwudhipong, S., and P. E. C. Seow. 2006. “Modelling of steel fiber-reinforced concrete under multi-axial loads.” Cem. Concr. Res. 36 (7): 1354–1361. https://doi.org/10.1016/j.cemconres.2006.03.008.
Thomas, J., and A. Ramaswamy. 2007. “Mechanical properties of steel fiber-reinforced concrete.” J. Mater. Civ. Eng. 19 (5): 385–392. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385).
Traina, L. A., and S. A. Mansour. 1991. “Biaxial strength and deformational behavior of plain and steel fiber concrete.” ACI Mater. J. 88 (4): 354–362.
Usman, M., S. H. Farooq, M. Umair, and A. Hanif. 2020. “Axial compressive behavior of confined steel fiber reinforced high strength concrete.” Constr. Build. Mater. 230 (Jan): 117043. https://doi.org/10.1016/j.conbuildmat.2019.117043.
Voyiadjis, G. Z., Z. N. Taqieddin, and P. I. Kattan. 2008. “Anisotropic damage-plasticity model for concrete.” Int. J. Plast. 24 (10): 1946–1965. https://doi.org/10.1016/j.ijplas.2008.04.002.
Wang, H. L. 2019. “Strength and deformation properties of high performance steel fiber reinforced lightweight concrete under multiaxial compression.” [In Chinese.] Eng. Mech. 36 (08): 122–132. https://doi.org/10.6052/j.issn.1000-4750.2018.07.0401.
Wang, Q. S., X. B. Li, G. Y. Zhao, P. Shao, and J. R. Yao. 2008. “Experiment on mechanical properties of steel fiber reinforced concrete and application in deep underground engineering.” J. China Univ. Min. Technol. 18 (1): 64–81. https://doi.org/10.1016/S1006-1266(08)60014-0.
Wu, J. Y., J. Li, and R. Faria. 2006. “An energy release rate-based plastic-damage model for concrete.” Int. J. Solids Struct. 43 (3–4): 583–612. https://doi.org/10.1016/j.ijsolstr.2005.05.038.
Xu, H. Y., Z. J. Wang, Z. M. Shao, L. B. Cai, H. S. Jin, Z. Z. Zhang, Z. H. Qiu, X. H. Rui, and T. W. Chen. 2021. “Experimental study on durability of fiber reinforced concrete: Effect of cellulose fiber, polyvinyl alcohol fiber and polyolefin fiber.” Constr. Build. Mater. 306 (Nov): 124867. https://doi.org/10.1016/j.conbuildmat.2021.124867.
Yao, W., J. Li, and K. Wu. 2003. “Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction.” Cem. Concr. Res. 33 (1): 27–30. https://doi.org/10.1016/S0008-8846(02)00913-4.
Yao, Y., H. Fang, and H. C. Guo. 2022. “Unified damage constitutive model for fiber-reinforced concrete at high temperature.” J. Eng. Mech. 148 (1): 04021132. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002057.
Yin, W. S., E. C. M. Su, M. A. Mansur, and T. T. C. Hsu. 1989. “Biaxial tests of plain and fiber concrete.” ACI Mater. J. 86 (3): 236–243.
Zhou, Z. B. 2001. The least energy consumption principle and its application. [In Chinese.] Beijing: Science Press.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 148Issue 7July 2022

History

Received: Dec 3, 2021
Accepted: Jan 28, 2022
Published online: Apr 18, 2022
Published in print: Jul 1, 2022
Discussion open until: Sep 18, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Xia Wu
Ph.D. Student, School of Civil Engineering, Central South Univ., Changsha 410075, China.
Faxing Ding [email protected]
Professor, School of Civil Engineering, Central South Univ., Changsha 410075, China (corresponding author). Email: [email protected]
Professor, School of Civil Engineering, Central South Univ., Changsha 410075, China. ORCID: https://orcid.org/0000-0002-1636-4111
Yi Wang
Professor, School of Civil Engineering, Central South Univ., Changsha 410075, China.
Zhiwu Yu
Professor, School of Civil Engineering, Central South Univ., Changsha 410075, China.
Chenglu Liu
Master’s Student, School of Civil Engineering, Central South Univ., Changsha 410075, China.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Static–Dynamic Universal Strength Criterion for Concrete Material, Journal of Engineering Mechanics, 10.1061/(ASCE)EM.1943-7889.0002180, 149, 1, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share