Technical Papers
Feb 15, 2022

Using Hydraulic Transients for Biofilm Detachment in Water Distribution Systems: Approximated Model

Publication: Journal of Water Resources Planning and Management
Volume 148, Issue 4

Abstract

This study presents an approximated model for pressure transient simulations as well as a local wall shear stress analysis to control and dislodge biofilm growth in water distribution systems. It demonstrates the potential of taming hydraulic transients to manage and disrupt the growth of biofilm colonies attached to the inner walls of pipeline systems. The systems are subjected to consecutive controlled transient pressure waves by manipulating valves positioned strategically along the water distribution system. Because the controlled transient waves are generated at different locations in the system, the interference properties of the waves can be capitalized on at points where different pressure waves can come together and merge in the system, thus creating high pressures and powerful shear stresses. Nevertheless, it is vital to keep the head pressure confined within the allowed pressure range to avert extreme devastating pressures and ensure the integrity of the system. Three case study applications of increasing complexity are presented to demonstrate the potential of this approach. These transient wave simulations implemented the Lagrangian-based wave characteristic transient model, and the optimization of valve operation was governed by an evolutionary genetic algorithm. The results indicate that it is possible to trigger transient events for biofilm management purposes without exceeding the allowed critical pressure in various network layouts.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This research was supported by the Israel Science Foundation (Grant No. 555/18).

References

Ayati, A. H., A. Haghighi, and P. Lee. 2019. “Statistical review of major standpoints in hydraulic transient-based leak detection.” J. Hydraul. Struct. 5 (1): 1–26.
Bergant, A., A. Ross Simpson, and J. Vìtkovsk. 2001. “Developments in unsteady pipe flow friction modeling.” J. Hydraul. Res. 39 (3): 249–257. https://doi.org/10.1080/00221680109499828.
Bergant, A., A. R. Simpson, and M. Scotland. 1994. Estimating unsteady friction in transient ca vita ting pipe flow. Adelaide, SA: Univ. of Adelaide.
Bonin, C. C. 1960. “Water-hammer damage to Oigawa power station.” J. Eng. Power. 82 (2): 111–116.
Branda, S. S., L. Vik Å Friedman, and R. Kolter. 2005. “Biofilms: The matrix revisited.” Trends Microbiol. 13 (1): 20–26. https://doi.org/10.1016/j.tim.2004.11.006.
Brunone, B. 1999. “Transient test-based technique for leak detection in outfall pipes.” J. Water Resour. Plann. Manage. 125 (5): 302–306. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:5(302).
Brunone, B., and A. Berni. 2010. “Wall shear stress in transient turbulent pipe flow by local velocity measurement.” J. Hydraul. Eng. 136 (10): 716–726. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000234.
Brunone, B., and M. Ferrante. 2001. “Detecting leaks in pressurised pipes by means of transients.” J. Hydraul. Res. 39 (5): 539–547.
Brunone, B., U. M. Golia, and M. Greco. 1995. “Effects of two-dimensionality on pipe transients modeling.” J. Hydraul. Eng. 121 (12): 906–912. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:12(906).
Brunone, B., B. W. Karney, M. Mecarelli, and M. Ferrante. 2000. “Velocity profiles and unsteady pipe friction in transient flow.” J. Water Resour. Plann. Manage. 126 (4): 236–244. https://doi.org/10.1061/(ASCE)0733-9496(2000)126:4(236).
Carstens, M. R., and J. E. Roller. 1959. “Boundary-shear stress in unsteady turbulent pipe flow.” J. Hydraul. Div. 85 (2): 67–81. https://doi.org/10.1002/j.1551-8833.2005.tb10936.x.
Chaudhry, M. H. 2014. “Transient-flow equations.” In Applied hydraulic transients, 35–64. Berlin: Springer.
Che, T. C., H. F. Duan, P. J. Lee, B. Pan, and M. S. Ghidaoui. 2018. “Transient frequency responses for pressurized water pipelines containing blockages with linearly varying diameters.” J. Hydraul. Eng. 144 (8): 04018054. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001499.
Che, T. C., H. F. Duan, B. Pan, P. J. Lee, and M. S. Ghidaoui. 2019. “Energy analysis of the resonant frequency shift pattern induced by nonuniform blockages in pressurized water pipes.” J. Hydraul. Eng. 145 (7): 04019027. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001607.
Colombo, A. F., P. Lee, and B. W. Karney. 2009. “A selective literature review of transient-based leak detection methods.” J. Hydro-environ. Res. 2 (4): 212–227. https://doi.org/10.1016/j.jher.2009.02.003.
Covas, D., and H. Ramos. 2010. “Case studies of leak detection and location in water pipe systems by inverse transient analysis.” J. Water Resour. Plann. Manage. 136 (2): 248–257. https://doi.org/10.1061/(ASCE)0733-9496(2010)136:2(248).
Covas, D., H. Ramos, and A. B. Almeida. 2005. “Impulse response method for solving hydraulic transients in viscoelastic pipes.” In Proc., 31st IAHR Congress, 676–686. Seoul, Korea: IAHR.
Creaco, E., G. Pezzinga, and D. Savic. 2017. “On the choice of the demand and hydraulic modelling approach to WDN real-time simulation.” Water Resour. Res. 53 (7): 6159–6177. https://doi.org/10.1002/2016WR020104.
Daily, J. W., W. L. Hankey, R. W. Olive, and J. M. Jordaan. 1955. Resistance coefficients for accelerated and decelerated flows through smooth tubes and orifices. Cambridge, MA: Massachusetts Institute of Technology Cambridge.
De Almeida, A. B. 1991. “Accidents and incidents: A harmful/powerful way to develop expertise on pressure transients.” In Proc., Int. Meeting on Hydraulic Transients with Water Column Separation, 9th Round Table of the IAHR Group, 379–401. Valencia, Spain: Universidad Politecnica de Valencia.
Donovan, A. R., C. D. Adams, Y. Ma, C. Stephan, T. Eichholz, and H. Shi. 2016. “Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during rinking water treatment.” Chemosphere 144 (Feb): 148–153. https://doi.org/10.1016/j.chemosphere.2015.07.081.
Douterelo, I., R. L. Sharpe, S. Husband, K. E. Fish, and J. B. Boxall. 2019. “Understanding microbial ecology to improve management of drinking water distribution systems.” Wiley Interdiscip. Rev.: Water 6 (1): e01325. https://doi.org/10.1002/wat2.1325.
Duan, H. F. 2020. “Development of a TFR-based method for the simultaneous detection of leakage and partial blockage in water supply pipelines.” J. Hydraul. Eng. 146 (7): 04020051. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001764.
Duan, H. F., and P. J. Lee. 2016. “Transient-based frequency domain method for dead-end side branch detection in reservoir pipeline-valve systems.” J. Hydraul. Eng. 142 (2): 04015042. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001070.
Duan, H. F., P. J. Lee, M. S. Ghidaoui, and J. Tuck. 2014. “Transient wave-blockage interaction and extended blockage detection in elastic water pipelines.” J. Fluids Struct. 46 (Apr): 2–16. https://doi.org/10.1016/j.jfluidstructs.2013.12.002.
Duan, H. F., P. J. Lee, M. S. Ghidaoui, and Y. K. Tung. 2012. “System response function–based leak detection in viscoelastic pipelines.” J. Hydraul. Eng. 138 (2): 143–153. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000495.
Duan, H. F., J. L. Lu, A. A. Kolyshkin, and M. S. Ghidaoui. 2011. “The effect of random inhomogeneities of pipe cross-sectional area on wave propagation.” In Proc., 34th World Congress of the Int. Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symp. and 10th Conf. on Hydraulics in Water Engineering. Beijing: International Association for Hydro-Environment Engineering and Research.
Duan, H. F., S. Meniconi, P. J. Lee, B. Brunone, and M. S. Ghidaoui. 2017. “Local and integral energy-based evaluation for the unsteady friction relevance in transient pipe flows.” J. Hydraul. Eng. 143 (7): 04017015. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001304.
Duan, H. F., Y. K. Tung, and M. S. Ghidaoui. 2010. “Probabilistic analysis of transient design for water supply systems.” J. Water Resour. Plann. Manage. 136 (6): 678–687. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000074.
Fowler, H. W., and A. J. McKay. 1980. “The measurement of microbial adhesion.” In Microbial adhesion to surfaces, 143–161. Chichester, UK: Ellis Horwood.
Gallot-Lavallee, T. H. I. E. R. R. Y., M. Lalande, and G. Corrieu. 1984. “Cleaning kinetics modeling of holding tubes fouled during milk pasteurization 1.” J. Food Process Eng. 7 (2): 123–142. https://doi.org/10.1111/j.1745-4530.1984.tb00642.x.
Ghazali, M. F., S. B. M. Beck, J. D. Shucksmith, J. B. Boxall, and W. J. Staszewski. 2012. “Comparative study of instantaneous frequency based methods for leak detection in pipeline networks.” Mech. Syst. Sig. Process. 29 (May): 187–200. https://doi.org/10.1016/j.ymssp.2011.10.011.
Ghidaoui, M. S., S. G. Mansour, and M. Zhao. 2002. “Applicability of quasisteady and axisymmetric turbulence models in water hammer.” J. Hydraul. Eng. 128 (10): 917–924. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:10(917).
Ghidaoui, M. S., M. Zhao, D. A. McInnis, and D. H. Axworthy. 2005. “A review of water hammer theory and practice.” Appl. Mech. Rev. 58 (1): 49–76. https://doi.org/10.1115/1.1828050.
Gong, J., M. F. Lambert, S. T. Nguyen, A. C. Zecchin, and A. R. Simpson. 2018. “Detecting thinner-walled pipe sections using a spark transient pressure wave generator.” J. Hydraul. Eng. 144 (2): 06017027. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001409.
Gong, J., M. F. Lambert, A. R. Simpson, and A. C. Zecchin. 2013. “Single-event leak detection in pipeline using first three resonant responses.” J. Hydraul. Eng. 139 (6): 645–655. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000720.
Gong, J., M. F. Lambert, A. R. Simpson, and A. C. Zecchin. 2014. “Detection of localized deterioration distributed along single pipelines by reconstructive MOC analysis.” J. Hydraul. Eng. 140 (2): 190–198. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000806.
Gong, J., M. F. Lambert, A. C. Zecchin, and A. R. Simpson. 2016. “Experimental verification of pipeline frequency response extraction and leak detection using the inverse repeat signal.” J. Hydraul. Res. 54 (2): 210–219. https://doi.org/10.1080/00221686.2015.1116115.
Graßhoff, A. 1992. “Hygienic design: The basis for computer controlled automation.” In Proc., Conf.: Food Engineering in a Computer Climate, 89–109. Rugby, UK: Institution of Chemical Engineers.
Hall-Stoodley, L., J. W. Costerton, and P. Stoodley. 2004. “Bacterial biofilms: From the natural environment to infectious diseases.” Nat. Rev. Microbiol. 2 (2): 95–108. https://doi.org/10.1038/nrmicro821.
He, S., and J. D. Jackson. 2000. “A study of turbulence under conditions of transient flow in a pipe.” J. Fluid Mech. 408 (Apr): 1–38. https://doi.org/10.1017/S0022112099007016.
Hemdan, B. A., G. E. El-Taweel, P. Goswami, D. Pant, and S. Sevda. 2021. “The role of biofilm in the development and dissemination of ubiquitous pathogens in drinking water distribution systems: An overview of surveillance, outbreaks, and prevention.” World J. Microbiol. Biotechnol. 37 (2): 1–18. https://doi.org/10.1007/s11274-021-03008-3.
Holmboe, E. L., and W. T. Rouleau. 1967. “The effect of viscous shear on transients in liquid lines.” J. Basic Eng. 89 (1): 174–180. https://doi.org/10.1115/1.3609549.
Jaeger, C., L. S. Kerr, and E. B. Wylie. 1948. “Water hammer effects in power conduits.” Civ. Eng. Public Works Rev. 23 (Feb):500–503. https://doi.org/10.1680/ijoti.1948.13508.
Jennings, W. G., A. A. McKillop, and J. K. Luick. 1957. “Circulation cleaning.” J. Dairy Sci. 40 (11): 1471–1479. https://doi.org/10.3168/jds.S0022-0302(57)94658-1.
Joukowsky, N. 1898. “Water hammer.” In Proc., American Water Works Association, 341. Denver: American Water Works Association.
Julian, R., D. Dragna, S. Ollivier, and P. Blanc-Benon. 2021. “Rational approximation of unsteady friction weighting functions in the Laplace Domain.” J. Hydraul. Eng. 147 (9): 04021031. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001905.
Jung, B. S., P. F. Boulos, D. J. Wood, and C. M. Bros. 2009. “A Lagrangian wave characteristic method for simulating transient water column separation.” J. Am. Water Works Assoc. 101 (6): 64–73. https://doi.org/10.1002/j.1551-8833.2009.tb09907.x.
Keramat, A., M. S. Ghidaoui, X. Wang, and M. Louati. 2019. “Cramer-Rao lower bound for performance analysis of leak detection.” J. Hydraul. Eng. 145 (6): 04019018. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001603.
Kim, S. 2016. “Impedance method for abnormality detection of a branched pipeline system.” Water Resour. Manage. 30 (3): 1101–1115. https://doi.org/10.1007/s11269-015-1213-6.
Kim, S. 2018. Multiple discrete blockage detection function for single pipelines, 582. Basel, Switzerland: Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/proceedings2110582.
Kim, S. H. 2020. “Multiple leak detection algorithm for pipe network.” Mech. Syst. Sig. Process. 139 (May): 106645. https://doi.org/10.1016/j.ymssp.2020.106645.
Kottmann, A. 1989. Vorgänge beim Abreißen einer Wassersäule. Phenomena during breakaway of a water column, 106–110. Essen, Germany: Vulkan-Verlag.
Lee, P. J., H. F. Duan, M. Ghidaoui, and B. Karney. 2013. “Frequency domain analysis of pipe fluid transient behavior.” J. Hydraul. Res. 51 (6): 609–622. https://doi.org/10.1080/00221686.2013.814597.
Lee, P. J., M. F. Lambert, A. R. Simpson, J. P. Vítkovský, and J. Liggett. 2006. “Experimental verification of the frequency response method for pipeline leak detection.” J. Hydraul. Res. 44 (5): 693–707. https://doi.org/10.1080/00221686.2006.9521718.
Lelièvre, C., P. Legentilhomme, C. Gaucher, J. Legrand, C. Faille, and T. Bénézech. 2002. “Cleaning in place: Effect of local wall shear stress variation on bacterial removal from stainless steel equipment.” Chem. Eng. Sci. 57 (8): 1287–1297. https://doi.org/10.1016/S0009-2509(02)00019-2.
Maes, S., T. Vackier, S. N. Huu, M. Heyndrickx, H. Steenackers, I. Sampers, K. Raes, A. Verplaetse, and K. De Reu. 2019. “Occurrence and characterisation of biofilms in drinking water systems of broiler houses.” BMC Microbiol. 19 (1): 1–15. https://doi.org/10.1186/s12866-019-1451-5.
Mandair, S., R. Magnan, J. F. Morissette, and B. Karney. 2020. “Energy-based evaluation of 1D unsteady friction models for classic laminar water hammer with comparison to CFD.” J. Hydraul. Eng. 146 (3): 04019072. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001697.
Marsili, V., S. Meniconi, S. Alvisi, B. Brunone, and M. Franchini. 2021. “Stochastic approach for the analysis of demand induced transients in real water distribution systems.” J. Water Resour. Plann. Manage. 148 (1): 04021093. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001498.
Meniconi, S., B. Brunone, M. Ferrante, and C. Massari. 2011. “Small amplitude sharp pressure waves to diagnose pipe systems.” Water Resour. Manage. 25 (1): 79–96. https://doi.org/10.1007/s11269-010-9688-7.
Meniconi, S., H. F. Duan, P. J. Lee, B. Brunone, M. S. Ghidaoui, and M. Ferrante. 2013. “Experimental investigation of coupled frequency and time-domain transient test–based techniques for partial blockage detection in pipelines.” J. Hydraul. Eng. 139 (10): 1033–1040. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000768.
Mohandas, N., R. M. Hochmuth, and E. E. Spaeth. 1974. “Adhesion of red cells to foreign surfaces in the presence of flow.” J. Biomed. Mater. Res. 8 (2): 119–136. https://doi.org/10.1002/jbm.820080203.
Parmakian, J. 1985. “Water-column separation in power and pumping plants.” Hydrol. Rev. 4 (2).
Pezzinga, G. 1999. “Quasi-2D model for unsteady flow in pipe networks.” J. Hydraul. Eng. 125 (7): 676–685. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:7(676).
Pezzinga, G. 2000. “Evaluation of unsteady flow resistances by quasi-2D or 1D models.” J. Hydraul. Eng. 126 (10): 778–785. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:10(778).
Powell, M. S., and N. K. Slater. 1982. “Removal rates of bacterial cells from glass surfaces by fluid shear.” Biotechnol. Bioeng. 24 (11): 2527–2537. https://doi.org/10.1002/bit.260241116.
Purevdorj, B., J. W. Costerton, and P. Stoodley. 2002. “Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms.” Appl. Environ. Microbiol. 68 (9): 4457–4464. https://doi.org/10.1128/AEM.68.9.4457-4464.2002.
Ramaprian, B. R., and S. W. Tu. 1980. “An experimental study of oscillatory pipe flow at transitional Reynolds numbers.” J. Fluid Mech. 100 (3): 513–544. https://doi.org/10.1017/S0022112080001267.
Sharma, M. M., H. Chamoun, D. S. R. Sarma, and R. S. Schechter. 1992. “Factors controlling the hydrodynamic detachment of particles from surfaces.” J. Colloid Interface Sci. 149 (1): 121–134. https://doi.org/10.1016/0021-9797(92)90398-6.
Stephens, M. L. 2008. Transient response analysis for fault detection and pipeline wall condition assessment in field water transmission and distribution pipelines and networks. Adelaide, SA: Univ. of Adelaide.
Stoodley, P., R. Cargo, C. J. Rupp, S. Wilson, and I. Klapper. 2002. “Biofilm material properties as related to shear-induced deformation and detachment phenomena.” J. Ind. Microbiol. Biotechnol. 29 (6): 361–367. https://doi.org/10.1038/sj.jim.7000282.
Sundstrom, L. J., and M. J. Cervantes. 2017. “Transient wall shear stress measurements and estimates at high Reynolds numbers.” Flow Meas. Instrum. 58 (Dec): 112–119. https://doi.org/10.1016/j.flowmeasinst.2017.10.003.
Trikha, A. K. 1975. “An efficient method for simulating frequency-dependent friction in transient liquid flow.” J. Fluids Eng. https://doi.org/10.1115/1.3447224.
Tu, S. W., and B. R. Ramaprian. 1983. “Fully developed periodic turbulent pipe flow. Part 1. Main experimental results and comparison with predictions.” J. Fluid Mech. 137 (Dec): 31–58. https://doi.org/10.1017/S0022112083002281.
Urbanowicz, K. 2018. “Fast and accurate modelling of frictional transient pipe flow.” J. Appl. Math. Mech. 98 (5): 802–823. https://doi.org/10.1002/zamm.201600246.
Vardy, A. E., and J. M. Brown. 2007. “Approximation of turbulent wall shear stresses in highly transient pipe flows.” J. Hydraul. Eng. 133 (11): 1219–1228. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:11(1219).
Vardy, A. E., and J. M. B. Brown. 2003. “Transient turbulent friction in smooth pipe flows.” J. Sound Vib. 259 (5): 1011–1036. https://doi.org/10.1006/jsvi.2002.5160.
Vardy, A. E., and J. M. B. Brown. 2004. “Transient turbulent friction in fully rough pipe flows.” J. Sound Vib. 270 (1–2): 233–257. https://doi.org/10.1016/S0022-460X(03)00492-9.
Verberk, J. Q. J. C., K. J. O’Halloran, L. A. Hamilton, J. H. G. Vreeburg, and J. C. Van Dijk. 2007. “Measuring particles in drinking water transportation systems with particle counters.” J. Water Supply Res. Technol. 56 (5): 345–355. https://doi.org/10.2166/aqua.2007.069.
Visser, J. 1970. “Measurement of the force of adhesion between submicron carbon-black particles and a cellulose film in aqueous solution.” J. Colloid Interface Sci. 34 (1): 26–31. https://doi.org/10.1016/0021-9797(70)90254-7.
Vitkovsky, J., P. Lee, M. Stephens, M. Lambert, A. Simpson, and J. Liggett. 2003. “Leak and blockage detection in pipelines via an impulse response method.” J. Fluids Eng. https://doi.org/10.1115/1.3447224.
Walski, T. M., D. V. Chase, D. A. Savic, W. Grayman, S. Beckwith, and E. Koelle. 2003. Advanced water distribution modeling and management. Waterbury, CT: Haestad Press.
Wan, W., and X. Mao. 2016. “Shock wave speed and transient response of PE pipe with steel-mesh reinforcement.” Shock Vib. 2016 (Jan): 10. https://doi.org/10.1155/2016/8705031.
Wang, X., and M. S. Ghidaoui. 2018. “Pipeline leak detection using the matched-field processing method.” J. Hydraul. Eng. 144 (6): 04018030. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001476.
Wang, X., D. P. Palomar, L. Zhao, M. S. Ghidaoui, and R. D. Murch. 2019. “Spectral-based methods for pipeline leakage localization.” J. Hydraul. Eng. 145 (3): 04018089. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001572.
Weston, S. L., R. P. Collins, and J. B. Boxall. 2021. “An experimental study of how hydraulic transients cause mobilisation of material within drinking water distribution systems.” Water Res. 194 (Apr): 116890. https://doi.org/10.1016/j.watres.2021.116890.
Wood, D. J., R. G. Dorsch, and C. Lightner. 1965. Digital distributed parameter model for analysis of unsteady flow in liquid-filled lines. Washington, DC: National Aeronautics and Space Administration.
Wood, D. J., R. G. Dorsch, and C. Lightner. 1966. “Wave-plan analysis of unsteady flow in closed conduits.” J. Hydraul. Div. 92 (2): 83–110. https://doi.org/10.1061/JYCEAJ.0001447.
Wood, D. J., S. Lingireddy, and P. F. Boulos. 2005a. Pressure wave analysis of transient flow in pipe distribution systems. Arcadia, CA: MWH Soft.
Wood, D. J., S. Lingireddy, P. F. Boulos, B. W. Karney, and D. L. McPherson. 2005b. “Numerical methods for modeling transient flow in distribution systems.” J. Am. Water Works Assoc. 97 (7): 104–115. https://doi.org/10.1002/j.1551-8833.2005.tb10936.x.
Wylie, E. B., and V. L. Streeter. 1978. Fluid transients in systems. Englewood Cliffs, NJ: Prentice Hall.
Wylie, E. B., V. L. Streeter, and L. Suo. 1993. Fluid transients in systems. Englewood Cliffs, NJ: Prentice Hall.
Xu, X., and B. Karney. 2017. An overview of transient fault detection techniques. Modeling and monitoring of pipelines and networks, 13–37. New York: Springer. https://doi.org/10.1007/978-3-319-55944-5_2.
Yao, Y., and O. Habimana. 2019. “Biofilm research within irrigation water distribution systems: Trends, knowledge gaps, and future perspectives.” Sci. Total Environ. 673 (Jul): 254–265. https://doi.org/10.1016/j.scitotenv.2019.03.464.
Zhao, M., and M. S. Ghidaoui. 2003. “Efficient quasi-two-dimensional model for water hammer problems.” J. Hydraul. Eng. 129 (12): 1007–1013. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:12(1007).
Zhao, M., and M. S. Ghidaoui. 2006. “Investigation of turbulence behavior in pipe transient using ak–∈ model.” J. Hydraul. Res. 44 (5): 682–692. https://doi.org/10.1080/00221686.2006.9521717.
Zielke, W. 1968. “Frequency-dependent friction in transient pipe flow.” J. Basic Eng. https://doi.org/10.1115/1.3605049.
Zouari, F., E. Blåsten, M. Louati, and M. S. Ghidaoui. 2019. “Internal pipe area reconstruction as a tool for blockage detection.” J. Hydraul. Eng. 145 (6): 04019019. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001602.
Zouari, F., M. Louati, S. Meniconi, E. Blåsten, M. S. Ghidaoui, and B. Brunone. 2020. “Experimental verification of the accuracy and robustness of area reconstruction method for pressurized water pipe system.” J. Hydraul. Eng. 146 (3): 04020004. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001674.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 148Issue 4April 2022

History

Received: Nov 27, 2021
Accepted: Dec 18, 2021
Published online: Feb 15, 2022
Published in print: Apr 1, 2022
Discussion open until: Jul 15, 2022

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Mohamad Zeidan, S.M.ASCE [email protected]
Ph.D. Student, Faculty of Civil and Environmental Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel. Email: [email protected]
Professor, Faculty of Civil and Environmental Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel (corresponding author). ORCID: https://orcid.org/0000-0001-9112-6079. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Pressure Transient Utilization for Pipeline Particle Deposits Laceration, Journal of Hydraulic Engineering, 10.1061/JHEND8.HYENG-13671, 150, 2, (2024).
  • Water Quality in Premise Plumbing Systems, Premise Plumbing Modeling, 10.1061/9780784485101.ch4, (53-85), (2023).
  • Unsteady Friction Modeling Technique for Lagrangian Approaches in Transient Simulations, Water, 10.3390/w14152437, 14, 15, (2437), (2022).
  • Consumption Change‐Induced Transients in a Water Distribution Network: Laboratory Tests in a Looped System, Water Resources Research, 10.1029/2021WR031343, 58, 10, (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share