Technical Papers
Apr 21, 2021

Evaluation of GNSS-IR for Retrieving Soil Moisture and Vegetation Growth Characteristics in Wheat Farmland

Publication: Journal of Surveying Engineering
Volume 147, Issue 3

Abstract

Global navigation satellite system interferometric reflectometry (GNSS-IR) is a new remote sensing method that has shown great potential for estimating soil moisture variation and vegetation growth in the vicinity of GNSS sites. Various retrieval methods have been proposed, and the accuracy of the retrieval results are continually improving. However, few experiments have comprehensively evaluated the potential of the BeiDou Navigation Satellite System (BDS) to retrieve soil moisture and vegetation growth in a farmland environment, especially the vegetation height. In this study, volumetric soil moisture (VSM) variation and wheat growth were retrieved from BDS B1/B2/B3 and Global Positioning System (GPS) L1/L2 signal-to-noise ratio (SNR) data collected from a wheat farm in Zhangxizhuang, Beijing, and evaluated by comparison with in situ observations. VSM was retrieved before significant wheat growth and after wheat harvest, wheat growth was retrieved in the remaining period, and traditional, empirical mode decomposition (EMD), and wavelet algorithms were used to estimate the optimal wheat height change process. The experimental results show that the root-mean-square error (RMSE) between GPS L1/L2 and BDS B1/B2/B3 frequencies in VSM retrieval and in situ VSM is 0.039 and 0.035 and 0.027, 0.022, and 0.021  m3·m3, respectively. Moreover, the negative normalized amplitude exhibits a good correlation with the normalized difference vegetation index (NDVI) during high wheat coverage (R=0.67). The GNSS-derived wheat height is consistent with the in situ wheat height change, and the retrieval value perfectly reflects the process of the wheat crop height changing rapidly to relatively stable and then to harvest. Thus, GNSS-IR technology has excellent capability and potential for monitoring farmland VSM and vegetation growth.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data used to support the findings of this study are available from the corresponding author upon request.

Acknowledgments

This work has been supported by National Key R&D Program of China (2019YFC1509802, 2020YFC1512000, 2018YFC1505102); Natural Science Foundation of China projects (NSFC) (42074041, 41731066); Shaanxi Natural Science Research Program (2020JM-227); Fundamental Research Funds for the Central Universities (Nos. 300102269201, 300102299206). The authors thank Carolyn Roesler and Kristine M. Larson for providing Software Tools for GNSS Interferometric Reflectometry (GNSS-IR) (https://www.ngs.noaa.gov/gps-toolbox/GNSS-IR.htm). Two anonymous reviewers and editors are thanked for their constructive review of this manuscript.

References

Al-Khaldi, M. M., J. T. Johnson, A. J. O’Brien, A. Balenzano, and F. Mattia. 2019. “Time-series retrieval of soil moisture using CYGNSS.” IEEE Trans. Geosci. Remote Sens. 57 (7): 4322–4331. https://doi.org/10.1109/TGRS.2018.2890646.
Ban, W., K. Yu, and X. Zhang. 2018. “GEO-satellite-based reflectometry for soil moisture estimation: Signal modeling and algorithm development.” IEEE Trans. Geosci. Remote Sens. 56 (3): 1829–1838. https://doi.org/10.1109/TGRS.2017.2768555.
Barre, H. M. J., B. Duesmann, and Y. Kerr. 2008. “SMOS: The mission and the system.” IEEE Trans. Geosci. Remote Sens. 46 (3): 587–593. https://doi.org/10.1109/TGRS.2008.916264.
Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware. 1992. “GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system.” J. Geophys. Res. Atmos. 97 (14): 15787–15801. https://doi.org/10.1029/92JD01517.
Bilich, A., P. Axelrad, and K. M. Larson. 2007. “Scientific utility of the signal-to-noise ratio (SNR) reported by geodetic GPS receivers.” In Vol. 2 of Proc., Int. Technical Meeting of the Satellite Division of the Institute of Navigation, 1999–2010. Fort Worth, TX: Institute of Navigation.
Bilich, A., and K. M. Larson. 2006. “Mapping the GPS multipath environment using SNR data.” Radio Sci. 42 (6): RS6003. https://doi.org/10.1029/2007RS003652.
Bilich, A., K. M. Larson, and P. Axelrad. 2008. “Modeling GPS phase multipath with SNR: Case study from the Salar de Uyuni, Boliva.” J. Geophys. Res. Solid Earth 113 (4): B04401. https://doi.org/10.1029/2007JB005194.
Blonquist, J. M., S. B. Jones, and D. A. Robinson. 2005. “Standardizing characterization of electromagnetic water content sensors. Part 2: Evaluation of seven sensing systems.” Vadose Zone J. 4 (4): 1059–1069. https://doi.org/10.2136/vzj2004.0141.
Calabia, A., I. Molina, and S. Jin. 2020. “Soil moisture content from GNSS reflectometry using dielectric permittivity from Fresnel reflection coefficients.” Remote Sens. 12 (1): 122. https://doi.org/10.3390/rs12010122.
Chang, X., T. Jin, K. Yu, Y. Li, J. Li, and Q. Zhang. 2019. “Soil moisture estimation by GNSS multipath signal.” Remote Sens. 11 (21): 2559. https://doi.org/10.3390/rs11212559.
Chew, C., E. E. Small, and K. M. Larson. 2016. “An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil.” GPS Solut. 20 (3): 525–537. https://doi.org/10.1007/s10291-015-0462-4.
Chew, C., E. E. Small, K. M. Larson, and V. U. Zavorotny. 2014. “Effects of near-surface soil moisture on GPS SNR data: Development of a retrieval algorithm for soil moisture.” IEEE Trans. Geosci. Remote Sens. 52 (1): 537–543. https://doi.org/10.1109/TGRS.2013.2242332.
Chew, C., E. E. Small, K. M. Larson, and V. U. Zavorotny. 2015. “Vegetation sensing using GPS-interferometric reflectometry: Theoretical effects of canopy parameters on signal-to-noise ratio data.” IEEE Trans. Geosci. Remote Sens. 53 (5): 2755–2764. https://doi.org/10.1109/TGRS.2014.2364513.
Clarizia, M. P., C. S. Ruf, P. Cipollini, and C. Zuffada. 2016. “First spaceborne observation of sea surface height using GPS-reflectometry.” Geophys. Res. Lett. 43 (2): 767–774. https://doi.org/10.1002/2015GL066624.
Clarizia, M. P., C. S. Ruf, P. Jales, and C. Gommenginger. 2014. “Spaceborne GNSS-R minimum variance wind speed estimator.” IEEE Trans. Geosci. Remote Sens. 52 (11): 6829–6843. https://doi.org/10.1109/TGRS.2014.2303831.
Edokossi, K., A. Calabia, S. Jin, and I. Molina. 2020. “GNSS-reflectometry and remote sensing of soil moisture: A review of measurement techniques, methods, and applications.” Remote Sens. 12 (4): 614. https://doi.org/10.3390/rs12040614.
Entekhabi, D., E. G. Njoku, P. E. Oneill, M. W. Spencer, T. J. Jackson, J. Entin, E. Im, and K. Kellogg. 2008. “The soil moisture active/passive mission (SMAP).” In Proc., Int. Geoscience and Remote Sensing Symp., 1–4. New York: IEEE.
Evett, S. R., R. C. Schwartz, J. A. Tolk, and T. A. Howell. 2009. “Soil profile water content determination: Spatiotemporal variability of electromagnetic and neutron probe sensors in access tubes.” Vadose Zone J. 8 (4): 926–941. https://doi.org/10.2136/vzj2008.0146.
Garrison, J. L., A. Komjathy, V. U. Zavorotny, and S. J. Katzberg. 2002. “Wind speed measurement using forward scattered GPS signals.” IEEE Trans. Geosci. Remote Sens. 40 (1): 50–65. https://doi.org/10.1109/36.981349.
Gutmann, E. D., K. M. Larson, M. Williams, F. G. Nievinski, and V. U. Zavorotny. 2012. “Snow measurement by GPS interferometric reflectometry: An evaluation at Niwot Ridge, Colorado.” Hydrol. Process. 26 (19): 2951–2961. https://doi.org/10.1002/hyp.8329.
Hallikainen, M., F. T. Ulaby, M. C. Dobson, M. A. Elrayes, and L. Wu. 1985. “Microwave dielectric behavior of wet soil. Part 1: Empirical models and experimental observations.” IEEE Trans. Geosci. Remote Sens. GE-23 (1): 25–34. https://doi.org/10.1109/TGRS.1985.289497.
Han, M., Y. Zhu, D. Yang, Q. Chang, X. Hong, and S. Song. 2020. “Soil moisture monitoring using GNSS interference signal: Proposing a signal reconstruction method.” Remote Sens. Lett. 11 (4): 373–382. https://doi.org/10.1080/2150704X.2020.1718235.
Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu. 1998. “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.” Proc. Math. Phys. Eng. Sci. 454 (1971): 903–995. https://doi.org/10.1098/rspa.1998.0193.
Jackson, T. J., D. Chen, M. H. Cosh, F. Li, M. C. Anderson, C. L. Walthall, P. Doriaswamy, and E. R. Hunt. 2004. “Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans.” Remote Sens. Environ. 92 (4): 475–482. https://doi.org/10.1016/j.rse.2003.10.021.
Jia, Y., S. Jin, P. Savi, Y. Gao, J. Tang, Y. Chen, and W. Li. 2019. “GNSS-R soil moisture retrieval based on a XGboost machine learning aided method: Performance and validation.” Remote Sens. 11 (14): 1655. https://doi.org/10.3390/rs11141655.
Jin, S., C. Estel, and F. Xie. 2014. GNSS remote sensing theory, methods and applications. Berlin: Springer. https://doi.org/10.1007/978-94-007-7482-7.
Jin, S., X. Qian, and H. S. Kutoglu. 2016. “Snow depth variations estimated from GPS-reflectometry: A case study in Alaska from L2P SNR data.” Remote Sens. 8 (1): 63. https://doi.org/10.3390/rs8010063.
Karegar, M. A., and J. Kusche. 2020. “Imprints of COVID-19 lockdown on GNSS observations: An initial demonstration using GNSS interferometric reflectometry.” Geophys. Res. Lett. 47 (19): e2020GL089647. https://doi.org/10.1029/2020GL089647.
Katzberg, S. J., O. Torres, M. S. Grant, and D. Masters. 2006. “Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: Results from SMEX02.” Remote Sens. Environ. 100 (1): 17–28. https://doi.org/10.1016/j.rse.2005.09.015.
Larson, K. M. 2016. “GPS interferometric reflectometry: Applications to surface soil moisture, snow depth, and vegetation water content in the western United States.” Wiley Interdiscip. Rev.: Water 3 (6): 775–787. https://doi.org/10.1002/wat2.1167.
Larson, K. M., J. Braun, E. E. Small, V. U. Zavorotny, E. D. Gutmann, and A. Bilich. 2010. “GPS multipath and its relation to near-surface soil moisture content.” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 3 (1): 91–99. https://doi.org/10.1109/JSTARS.2009.2033612.
Larson, K. M., E. D. Gutmann, V. U. Zavorotny, J. Braun, M. Williams, and F. G. Nievinski. 2009. “Can we measure snow depth with GPS receivers?” Geophys. Res. Lett. 36 (17): L17502. https://doi.org/10.1029/2009GL039430.
Larson, K. M., J. Lofgren, and R. Haas. 2013a. “Coastal sea level measurements using a single geodetic GPS receiver.” Adv. Space Res. 51 (8): 1301–1310. https://doi.org/10.1016/j.asr.2012.04.017.
Larson, K. M., and F. G. Nievinski. 2013. “GPS snow sensing: Results from the EarthScope plate boundary observatory.” GPS Solut. 17 (1): 41–52. https://doi.org/10.1007/s10291-012-0259-7.
Larson, K. M., R. D. Ray, F. G. Nievinski, and J. T. Freymueller. 2013b. “The accidental tide gauge: A GPS reflection case study from Kachemak Bay, Alaska.” IEEE Geosci. Remote Sens. Lett. 10 (5): 1200–1204. https://doi.org/10.1109/LGRS.2012.2236075.
Larson, K. M., E. E. Small, E. D. Gutmann, A. Bilich, P. Axelrad, and J. Braun. 2008a. “Using GPS multipath to measure soil moisture fluctuations: Initial results.” GPS Solut. 12 (3): 173–177. https://doi.org/10.1007/s10291-007-0076-6.
Larson, K. M., E. E. Small, E. D. Gutmann, A. Bilich, J. Braun, and V. U. Zavorotny. 2008b. “Use of GPS receivers as a soil moisture network for water cycle studies.” Geophys. Res. Lett. 35 (24): L24405. https://doi.org/10.1029/2008GL036013.
Li, W., F. Fabra, D. Yang, A. Rius, M. Martinneira, C. Yin, Q. Wang, and Y. Cao. 2016. “Initial results of typhoon wind speed observation using coastal GNSS-R of BeiDou GEO satellite.” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9 (10): 4720–4729. https://doi.org/10.1109/JSTARS.2016.2523126.
Li, W., D. Yang, S. Daddio, and M. Martinneira. 2014. “Partial interferometric processing of reflected GNSS signals for ocean altimetry.” IEEE Geosci. Remote Sens. Lett. 11 (9): 1509–1513. https://doi.org/10.1109/LGRS.2013.2297697.
Liancourt, P., A. Sharkhuu, L. Ariuntsetseg, B. Boldgiv, B. R. Helliker, A. F. Plante, P. S. Petraitis, and B. B. Casper. 2012. “Temporal and spatial variation in how vegetation alters the soil moisture response to climate manipulation.” Plant Soil 351 (1–2): 249–261. https://doi.org/10.1007/s11104-011-0956-y.
Martin-Neira, M. 1993. “A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry.” ESA J. 17 (4): 331–355.
Naeimi, V., Z. Bartalis, and W. Wagner. 2009. “ASCAT soil moisture: An assessment of the data quality and consistency with the ERS scatterometer heritage.” J. Hydrometeorol. 10 (2): 555–563. https://doi.org/10.1175/2008JHM1051.1.
Nievinski, F. G., and K. M. Larson. 2014a. “Forward modeling of GPS multipath for near-surface reflectometry and positioning applications.” GPS Solut. 18 (2): 309–322. https://doi.org/10.1007/s10291-013-0331-y.
Nievinski, F. G., and K. M. Larson. 2014b. “Inverse modeling of GPS multipath for snow depth estimation—Part I: Formulation and simulations.” IEEE Trans. Geosci. Remote Sens. 52 (10): 6555–6563. https://doi.org/10.1109/TGRS.2013.2297681.
Njoku, E. G., T. J. Jackson, V. Lakshmi, T. K. Chan, and S. V. Nghiem. 2003. “Soil moisture retrieval from AMSR-E.” IEEE Trans. Geosci. Remote Sens. 41 (2): 215–229. https://doi.org/10.1109/TGRS.2002.808243.
Norris, J. R., and J. J. Walker. 2020. “Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States.” Remote Sens. Environ. 249 (Nov): 112013. https://doi.org/10.1016/j.rse.2020.112013.
Ochsner, T. E., M. H. Cosh, M. G. Zreda, R. H. Cuenca, W. Dorigo, C. S. Draper, Y. Hagimoto, Y. H. Kerr, K. M. Larson, and E. G. Njoku. 2013. “State of the art in large-scale soil moisture monitoring.” Soil Sci. Soc. Am. J. 77 (6): 1888–1919. https://doi.org/10.2136/sssaj2013.03.0093.
Perry, M. A., and J. D. Niemann. 2008. “Generation of soil moisture patterns at the catchment scale by EOF interpolation.” Hydrol. Earth Syst. Sci. 12 (1): 39–53. https://doi.org/10.5194/hess-12-39-2008.
Press, W. H., and G. B. Rybicki. 1989. “Fast algorithm for spectral analysis of unevenly sampled data.” Astrophys. J. 338 (1): 277–280. https://doi.org/10.1086/167197.
Qiu, H., and S. Jin. 2020. “Global mean sea surface height estimated from spaceborne cyclone-GNSS reflectometry.” Remote Sens. 12 (3): 356. https://doi.org/10.3390/rs12030356.
Rodriguezalvarez, N., X. Boschlluis, A. Camps, A. Aguasca, M. Vallllossera, E. Valencia, I. Ramosperez, and H. Park. 2011. “Review of crop growth and soil moisture monitoring from a ground-based instrument implementing the interference pattern GNSS-R technique.” Radio Sci. 46 (6): 1–11. https://doi.org/10.1029/2011RS004680.
Rodriguezalvarez, N., X. Boschlluis, A. Camps, I. Ramosperez, E. Valencia, H. Park, and M. Vallllossera. 2012. “Vegetation water content estimation using GNSS measurements.” IEEE Geosci. Remote Sens. Lett. 9 (2): 282–286. https://doi.org/10.1109/LGRS.2011.2166242.
Segall, P., and J. L. Davis. 1997. “GPS applications for geodynamics and earthquake studies.” Annu. Rev. Earth Planet. Sci. 25 (1): 301–336. https://doi.org/10.1146/annurev.earth.25.1.301.
Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling. 2010. “Investigating soil moisture–climate interactions in a changing climate: A review.” Earth-Sci. Rev. 99 (3): 125–161. https://doi.org/10.1016/j.earscirev.2010.02.004.
Small, E. E., K. M. Larson, and J. Braun. 2010. “Sensing vegetation growth with reflected GPS signals.” Geophys. Res. Lett. 37 (12): L12401. https://doi.org/10.1029/2010GL042951.
Small, E. E., K. M. Larson, C. Chew, J. Dong, and T. E. Ochsner. 2016. “Validation of GPS-IR soil moisture retrievals: Comparison of different algorithms to remove vegetation effects.” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9 (10): 4759–4770. https://doi.org/10.1109/JSTARS.2015.2504527.
Small, E. E., K. M. Larson, and W. K. Smith. 2014. “Normalized microwave reflection index: Validation of vegetation water content estimates from Montana grasslands.” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7 (5): 1512–1521. https://doi.org/10.1109/JSTARS.2014.2320597.
Small, E. E., C. Roesler, and K. M. Larson. 2018. “Vegetation response to the 2012–2014 California drought from GPS and optical measurements.” Remote Sens. 10 (4): 630. https://doi.org/10.3390/rs10040630.
Topp, G. C., and J. L. Davis. 1985. “Measurement of soil water content using time-domain reflectrometry (TDR): A field evaluation.” J. Soil Sci. Soc. Am. 49 (1): 19–24. https://doi.org/10.2136/sssaj1985.03615995004900010003x.
Vey, S., A. Guntner, J. Wickert, T. Blume, and M. Ramatschi. 2016. “Long-term soil moisture dynamics derived from GNSS interferometric reflectometry: A case study for Sutherland, South Africa.” GPS Solut. 20 (4): 641–654. https://doi.org/10.1007/s10291-015-0474-0.
Wan, W., K. M. Larson, E. E. Small, C. Chew, and J. Braun. 2015. “Using geodetic GPS receivers to measure vegetation water content.” GPS Solut. 19 (2): 237–248. https://doi.org/10.1007/s10291-014-0383-7.
Wang, X., Q. Zhang, and S. Zhang. 2018. “Water levels measured with SNR using wavelet decomposition and Lomb–Scargle periodogram.” GPS Solut. 22 (1): 22. https://doi.org/10.1007/s10291-017-0684-8.
Wu, X., S. Jin, and L. Chang. 2017. “Monitoring bare soil freeze–thaw process using GPS-interferometric reflectometry: Simulation and validation.” Remote Sens. 10 (2): 14. https://doi.org/10.3390/rs10010014.
Xu, H., Q. Yuan, T. Li, H. Shen, L. Zhang, and H. Jiang. 2018. “Quality improvement of satellite soil moisture products by fusing with in-situ measurements and GNSS-R estimates in the Western Continental US.” Remote Sens. 10 (9): 1351. https://doi.org/10.3390/rs10091351.
Yan, S., N. Zhang, N. Chen, and J. Gong. 2019. “Using reflected signal power from the BeiDou geostationary satellites to estimate soil moisture.” Remote Sens. Lett. 10 (1): 1–10. https://doi.org/10.1080/2150704X.2018.1519272.
Yang, T., W. Wan, X. Chen, T. Chu, and Y. Hong. 2017. “Using BDS SNR observations to measure near-surface soil moisture fluctuations: Results from low vegetated surface.” IEEE Geosci. Remote Sens. Lett. 14 (8): 1308–1312. https://doi.org/10.1109/LGRS.2017.2710083.
Yu, K., S. Wang, Y. Li, X. Chang, and J. Li. 2019. “Snow depth estimation with GNSS-R dual receiver observation.” Remote Sens. 11 (17): 2056. https://doi.org/10.3390/rs11172056.
Zavorotny, V. U., K. M. Larson, J. Braun, E. E. Small, E. D. Gutmann, and A. Bilich. 2010. “A physical model for GPS multipath caused by land reflections: Toward bare soil moisture retrievals.” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 3 (1): 100–110. https://doi.org/10.1109/JSTARS.2009.2033608.
Zhang, S., K. Liu, Q. Liu, C. Zhang, Q. Zhang, and Y. Nan. 2019. “Tide variation monitoring based improved GNSS-MR by empirical mode decomposition.” Adv. Space Res. 63 (10): 3333–3345. https://doi.org/10.1016/j.asr.2019.01.046.
Zhang, S., N. Roussel, K. Boniface, M. C. Ha, F. Frappart, J. Darrozes, F. Baup, and J. C. Calvet. 2017. “Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop.” Hydrol. Earth Syst. Sci. 21 (9): 4767–4784. https://doi.org/10.5194/hess-21-4767-2017.
Zhang, X. 2007. “Advances in GNSS-R studies and key technologies.” Geo. Inf. Sci. Wuhan Univ. 32 (11): 955–960.
Zheng, N., Q. Feng, C. Liu, and X. Zhou. 2019. “Relationship analysis between gps reflection signal SNR and NDVI.” Geomatics Inf. Sci. Wuhan Univ. 44 (10): 1423–1429. https://doi.org/10.13203/j.whugis20180046.
Zhou, W., L. Liu, L. Huang, Y. Yao, J. Chen, and S. Li. 2019. “A new GPS SNR-based combination approach for land surface snow depth monitoring.” Sci. Rep. 9 (1): 1–20. https://doi.org/10.1038/s41598-019-40456-2.

Information & Authors

Information

Published In

Go to Journal of Surveying Engineering
Journal of Surveying Engineering
Volume 147Issue 3August 2021

History

Received: Jun 11, 2020
Accepted: Feb 4, 2021
Published online: Apr 21, 2021
Published in print: Aug 1, 2021
Discussion open until: Sep 21, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Shuangcheng Zhang [email protected]
Associate Professor, College of Geological Engineering and Geomatics, Chang’an Univ., Xi’an 710061, China (corresponding author). Email: [email protected]
Ph.D. Candidate, College of Geological Engineering and Geomatics, Chang’an Univ., Xi’an 710061, China. Email: [email protected]
Associate Professor, College of Geological Engineering and Geomatics, Chang’an Univ., Xi’an 710061, China. Email: [email protected]
Jingjiang Zhang [email protected]
Senior Engineer, Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China. Email: [email protected]
Graduate Student, College of Geological Engineering and Geomatics, Chang’an Univ., Xi’an 710061, China. Email: [email protected]
Ph.D. Candidate, College of Geological Engineering and Geomatics, Chang’an Univ., Xi’an 710061, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Simultaneous Retrieval of Corn Growth Status and Soil Water Content Based on One GNSS Antenna, Remote Sensing, 10.3390/rs15071738, 15, 7, (1738), (2023).
  • Snow depth retrieval by using robust estimation algorithm to perform multi-SNR and multi-system fusion in GNSS-IR, Advances in Space Research, 10.1016/j.asr.2022.10.014, 71, 3, (1525-1542), (2023).
  • Monitoring of Wheat Height Based on Multi-GNSS Reflected Signals, Remote Sensing, 10.3390/rs14194955, 14, 19, (4955), (2022).
  • Retrieval of Soil Moisture Content Based on Multisatellite Dual-Frequency Combination Multipath Errors, Remote Sensing, 10.3390/rs14133193, 14, 13, (3193), (2022).
  • Estimation of Wheat Height With SNR Observations Collected by Low-Cost Navigational GNSS Chip and RHCP Antenna, IEEE Geoscience and Remote Sensing Letters, 10.1109/LGRS.2021.3123806, 19, (1-5), (2022).
  • Using CYGNSS Data to Map Flood Inundation during the 2021 Extreme Precipitation in Henan Province, China, Remote Sensing, 10.3390/rs13245181, 13, 24, (5181), (2021).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share