Technical Papers
Apr 3, 2020

Enhanced Voids Growth Model for Ductile Fracture Prediction of High-Strength Steel Q690D under Monotonic Tension: Experiments and Numerical Simulation

Publication: Journal of Structural Engineering
Volume 146, Issue 6

Abstract

Accurate prediction of progressive damage and failure of structural steels is a nontrivial issue in practical design and assessment of steel structural buildings. It appears far more important in the fracture-oriented scenarios under extreme environmental actions or accidental overloading conditions because, in these cases, the ultimate strength of steel structures is directly governed by material failure. However, previous studies on ductile fracture of structural steels were relatively limited, especially for high-strength steels (HSSs) like Q690D steel. In this paper, an enhanced fracture model based on the voids growth model (VGM) is proposed. The normalized maximum shear stress is introduced to make it capable of capturing ductile fracture at low and moderate stress triaxialities. To calibrate and verify the newly proposed model, a series of tensile tests of smooth and notched round bar specimens and shear specimens with different shear angles were carried out by using Q690D steel. Bridgeman’s theory was applied to identify the postnecking constitutive relationship with the help of a three-dimensional digital image correlation (3D-DIC) system. The good agreements between numerical simulations and experimental results finally verified the applicability and reliability of the enhanced model in ductile fracture prediction.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors gratefully acknowledge the financial support provided by the National Key R&D Program of China (2016YFC0701203), National Natural Science Foundation of China (No. 51778086), and the Fundamental and Frontier Research Project of Chongqing (cstc2015jcyjBX0024).

References

ABAQUS. 2013. ABAQUS analysis user’s manual (version 6.13). Johnston, RI: Dassault Systèmes Simulia Corp.
Bao, Y., and T. Wierzbicki. 2004. “On fracture locus in the equivalent strain and stress triaxiality space.” Int. J. Mech. Sci. 46 (1): 81–98. https://doi.org/10.1016/j.ijmecsci.2004.02.006.
Basu, S., and A. A. Benzerga. 2015. “On the path-dependence of the fracture locus in ductile materials: Experiments.” Int. J. Solids Struct. 71 (Oct): 79–90. https://doi.org/10.1016/j.ijsolstr.2015.06.003.
Benzerga, A. A., D. Surovik, and S. M. Keralavarma. 2012. “On the path-dependence of the fracture locus in ductile materials–analysis.” Int. J. Plast. 37: 157–170.
Bonora, N., D. Gentile, A. Pirondi, and G. Newaz. 2005. “Ductile damage evolution under triaxial state of stress: Theory and experiments.” Int. J. Plast. 21 (5): 981–1007. https://doi.org/10.1016/j.ijplas.2004.06.003.
Bridgman, P. W. 1952. Studies in large plastic flow and fracture. New York: McGraw-Hill.
Brünig, M. 2006. “Continuum framework for the rate-dependent behavior of anisotropically damaged ductile metals.” Acta Mech. 186 (1–4): 37–53. https://doi.org/10.1007/s00707-006-0320-0.
Brünig, M., S. Gerke, and V. Hagenbrock. 2013. “Micro-mechanical studies on the effect of the stress triaxiality and the Lode parameter on ductile damage.” Int. J. Plast. 50 (Nov): 49–65. https://doi.org/10.1016/j.ijplas.2013.03.012.
Cao, T. S. 2014. “Numerical simulation of 3D ductile cracks formation using recent improved Lode-dependent plasticity and damage models combined with remeshing.” Int. J. Solids Struct. 51 (13): 2370–2381. https://doi.org/10.1016/j.ijsolstr.2014.03.005.
Cao, T. S., J. M. Gachet, P. Montmitonnet, and P. O. Bouchard. 2014. “A Lode-dependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality.” Eng. Fract. Mech. 124–125 (Jul): 80–96. https://doi.org/10.1016/j.engfracmech.2014.03.021.
Chinese Standard. 2008. High strength low alloy structural steels. GB/T1591. Beijing: China Standard Press.
Chi, W. M., A. M. Kanvinde, and G. G. Deierlein. 2006. “Prediction of ductile fracture in steel connections using SMCS criterion.” J. Struct. Eng. 132 (2): 171–181. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:2(171).
Choung, J. M., and S. R. Cho. 2008. “Study on true stress correction from tensile tests.” J. Mech. Sci. Tech. 22 (6): 1039–1051. https://doi.org/10.1007/s12206-008-0302-3.
Coppieters, S., S. Cooreman, H. Sol, P. Van Houtte, and D. Debruyne. 2011. “Identification of the post-necking hardening behavior of sheet metal by comparison of the internal and external work in the necking zone.” J. Mater. Process. Technol. 211 (3): 545–552. https://doi.org/10.1016/j.jmatprotec.2010.11.015.
Delatte, N. J. 2009. Beyond failure, forensic case studies for civil engineers. Reston, VA: ASCE.
Fu, Q. N., K. H. Tan, X. H. Zhou, and B. Yang. 2017. “Load-resisting mechanisms of 3D composite floor systems under internal column-removal scenario.” Eng. Struct. 148 (Oct): 357–372. https://doi.org/10.1016/j.engstruct.2017.06.070.
Grimsmo, E. L., A. H. Clausen, M. Langseth, and A. Aalberg. 2015. “An experimental study of static and dynamic behavior of bolted end-plate joints of steel.” Int. J. Impact Eng. 85 (Nov): 132–145. https://doi.org/10.1016/j.ijimpeng.2015.07.001.
Gurson, A. L. 1975. “Continuum theory of ductile rupture by void nucleation and growth: Part 1—Yield criteria and flow rules for porous ductile media.” J. Eng. Mater. Technol. 99 (1): 297–300. https://doi.org/10.1115/1.3443401.
Hu, Q., X. Li, X. Han, and J. Chen. 2017. “A new shear and tension based ductile fracture criterion: Modeling and validation.” Eur. J. Mech. A. Solids 66 (Nov–Dec): 370–386. https://doi.org/10.1016/j.euromechsol.2017.08.005.
Huang, X., L. Tong, F. Zhou, and Y. Chen. 2013. “Prediction of fracture behavior of beam-to-column welded joints using micromechanics damage model.” J. Constr. Steel Res. 85 (Jun): 60–72. https://doi.org/10.1016/j.jcsr.2013.02.014.
Jia, L. J., T. Koyama, and H. Kuwamura. 2014. “Experimental and numerical study of postbuckling ductile fracture of heat-treated SHS stub columns.” J. Struct. Eng. 140 (7): 04014044. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001056.
Jia, L. J., and H. Kuwamura. 2013. “Ductile fracture simulation of structural steels under monotonic tension.” J. Struct. Eng. 140 (5): 04013115. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000944.
Kachanov, L. M. 1958. “Time of the rupture process under creep conditions.” In Vol. 8 of Izvestiya Akademii Nauk SSSR, 26–31 [In Russian.] Tbilisi, Georgia: Otdelenie Teckhnicheskikh Nauk.
Kang, L., H. Ge, and T. Kato. 2015. “Experimental and ductile fracture model study of single-groove welded joints under monotonic loading.” Eng. Struct. 85 (Feb): 36–51. https://doi.org/10.1016/j.engstruct.2014.12.006.
Kanvinde, A. M., and G. G. Deierlein. 2006. “Void growth model and stress modified critical strain model to predict ductile fracture in structural steels.” J. Struct. Eng. 132 (12): 1907–1918. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1907).
Kanvinde, A. M., and G. G. Deierlein. 2007. “Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue.” J. Eng. Mech. 133 (6): 701–712. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:6(701).
Kanvinde, A. M., B. V. Fell, I. R. Gomez, and M. Roberts. 2008. “Predicting fracture in structural fillet welds using traditional and micromechanical fracture models.” Eng. Struct. 30 (11): 3325–3335. https://doi.org/10.1016/j.engstruct.2008.05.014.
Ketov, S. V., and D. V. Louzguine-Luzgin. 2013. “Localized shear deformation and softening of bulk metallic glass: Stress or temperature driven?” Sci. Rep. 3 (1): 2798. https://doi.org/10.1038/srep02798.
Kiran, R., and K. Khandelwal. 2014. “A triaxiality and Lode parameter dependent ductile fracture criterion.” Eng. Fract. Mech. 128 (Sep): 121–138. https://doi.org/10.1016/j.engfracmech.2014.07.010.
Lemaitre, J. 1985. “A continuous damage mechanics model for ductile fracture.” J. Eng. Mater. Technol. 107 (1): 83–89. https://doi.org/10.1115/1.3225775.
Li, H., M. W. Fu, J. Lu, and H. Yang. 2011. “Ductile fracture: Experiments and computations.” Int. J. Plast. 27 (2): 147–180. https://doi.org/10.1016/j.ijplas.2010.04.001.
Li, W., F. Liao, T. Zhou, and H. Askes. 2016. “Ductile fracture of Q460 steel: Effects of stress triaxiality and Lode angle.” J. Constr. Steel Res. 123 (Aug): 1–17. https://doi.org/10.1016/j.jcsr.2016.04.018.
Li, Y., M. Luo, J. Gerlach, and T. Wierzbicki. 2010. “Prediction of shear-induced fracture in sheet metal forming.” J. Mater. Process. Technol. 210 (14): 1858–1869. https://doi.org/10.1016/j.jmatprotec.2010.06.021.
Liao, F., W. Wang, and Y. Chen. 2015. “Ductile fracture prediction for welded steel connections under monotonic loading based on micromechanical fracture criteria.” Eng. Struct. 94 (Jul): 16–28. https://doi.org/10.1016/j.engstruct.2015.03.038.
Lin, W., and T. Wei. 2015. “Identification of post-necking strain hardening behavior of thin sheet metals from image-based surface strain data in uniaxial tension tests.” Int. J. Solids Struct. 75–76 (Dec): 12–31.
Ling, Y. 2004. “Uniaxial true stress–strain after necking.” Amp J. Technol. 5 (1): 37–48.
Lou, Y., H. Huh, S. Lim, and K. Pack. 2012. “New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals.” Int. J. Solids Struct. 49 (25): 3605–3615. https://doi.org/10.1016/j.ijsolstr.2012.02.016.
Lou, Y., and J. W. Yoon. 2017. “Anisotropic ductile fracture criterion based on linear transformation.” Int. J. Plast. 93 (Jun): 3–25. https://doi.org/10.1016/j.ijplas.2017.04.008.
Malcher, L., F. M. Andrade Pires, and J. M. A. César de Sá. 2014. “An extended GTN model for ductile fracture under high and low stress triaxiality.” Int. J. Plast. 54 (Mar): 193–228. https://doi.org/10.1016/j.ijplas.2013.08.015.
Maranian, P. 2010. Reducing brittle and fatigue failures in steel structures. Reston, VA: ASCE.
Miner, M. A. 1945. “Cumulative damage in fatigue.” J. Appl. Mech. 12 (3): A159–A164.
Morin, L., J.-B. Leblond, and A. A. Benzerga. 2015. “Coalescence of voids by internal necking: Theoretical estimates and numerical results.” J. Mech. Phys. Solids 75 (Feb): 140–158. https://doi.org/10.1016/j.jmps.2014.11.009.
Myers, A. T., A. M. Kanvinde, and G. G. Deierlein. 2010. “Calibration of the stress modified critical strain (SMCS) criterion for ductile fracture in steels: Specimen size dependence and parameter assessment.” J. Eng. Mech. 136 (11): 1401–1410. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000178.
Nahshon, K., and J. W. Hutchinson. 2008. “Modification of the Gurson model for shear failure.” Eur. J. Mech. A. Solids 27 (1): 1–17. https://doi.org/10.1016/j.euromechsol.2007.08.002.
Pardoen, T., and Y. Brechet. 2004. “Influence of microstructure-driven strain localization on the ductile fracture of metallic alloys.” Philos. Mag. 84 (3–5): 269–297. https://doi.org/10.1080/14786430310001610366.
Pineau, A., A. A. Benzerga, and T. Pardoen. 2016. “Failure of metals I: Brittle and ductile fracture.” Acta Mater. 107 (Apr): 424–483. https://doi.org/10.1016/j.actamat.2015.12.034.
Rice, J. R., and D. M. Tracey. 1969. “On the ductile enlargement of voids in triaxial stress fields.” J. Mech. Phys. Solids 17 (3): 201–217. https://doi.org/10.1016/0022-5096(69)90033-7.
Roy, G. L., J. D. Embury, G. Edwards, and M. F. Ashby. 1981. “A model of ductile fracture based on the nucleation and growth of voids.” Acta Metall. 29 (8): 1509–1522. https://doi.org/10.1016/0001-6160(81)90185-1.
Sutton, M. A., S. R. Mcneill, J. D. Helm, and Y. J. Chao. 2000. “Advances in two-dimensional and three-dimensional computer vision.” Top. Appl. Phys. 77 (1): 323–372. https://doi.org/10.1007/3-540-48800-6_10.
Tekoğlu, C. 2015. “Void coalescence in ductile solids containing two populations of voids.” Eng. Fract. Mech. 147 (Oct): 418–430. https://doi.org/10.1016/j.engfracmech.2015.07.004.
Thomas, N., S. Basu, and A. A. Benzerga. 2016. “On fracture loci of ductile materials under non-proportional loading.” Int. J. Mech. Sci. 117: 135–151.
Tian, R., Y. Tian, C. Wang, and L. Zhao. 2017. “Mechanical properties and fracture mechanisms of Sn-3.0Ag-0.5Cu solder alloys and joints at cryogenic temperatures.” Mater. Sci. Eng., A 684 (Jan): 697–705. https://doi.org/10.1016/j.msea.2016.12.058.
Torki, M. E., and A. A. Benzerga. 2018. “A mechanism of failure in shear bands.” Extreme Mech. Lett. 23 (Sep): 67–71. https://doi.org/10.1016/j.eml.2018.06.008.
Tvergaard, V. 1981. “Influence of voids on shear band instabilities under plane strain conditions.” Int. J. Fract. 17 (4): 389–407. https://doi.org/10.1007/BF00036191.
Tvergaard, V., and A. Needleman. 1984. “Analysis of the cup-cone fracture in a round tensile bar.” Acta Metall. 32 (1): 157–169. https://doi.org/10.1016/0001-6160(84)90213-X.
Wang, Y.-D., S. H. Xu, S. B. Ren, and H. Wang. 2016. “An experimental-numerical combined method to determine the true constitutive relation of tensile specimens after necking.” Adv. Mater. Sci. Eng. 2016 (4): 1–12. https://doi.org/10.1155/2016/6015752.
Weck, A., and D. S. Wilkinson. 2008. “Experimental investigation of void coalescence in metallic sheets containing laser drilled holes.” Acta Mater. 56 (8): 1774–1784. https://doi.org/10.1016/j.actamat.2007.12.035.
Xiang, P., L.-J. Jia, K. Ke, Y. Chen, and H. Ge. 2017. “Ductile cracking simulation of uncracked high strength steel using an energy approach.” J. Constr. Steel Res. 138 (Nov): 117–130. https://doi.org/10.1016/j.jcsr.2017.07.002.
Xue, L. 2008. “Constitutive modeling of void shearing effect in ductile fracture of porous materials.” Eng. Fract. Mech. 75 (11): 3343–3366. https://doi.org/10.1016/j.engfracmech.2007.07.022.
Yam, M. C. H., C. Fang, and A. C. C. Lam. 2016. “Local web buckling mechanism and practical design of double-coped beam connections.” Eng. Struct. 125 (1): 54–69. https://doi.org/10.1016/j.engstruct.2016.06.049.
Yan, S., X. Zhao, and A. Wu. 2018. “Ductile fracture simulation of constructional steels based on yield-to-fracture stress–strain relationship and micromechanism-based fracture criterion.” J. Struct. Eng. 144 (3): 04018004. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001970.
Yang, B., and K. H. Tan. 2013. “Experimental tests of different types of bolted steel beam–column joints under a central-column-removal scenario.” Eng. Struct. 54 (Sep): 112–130. https://doi.org/10.1016/j.engstruct.2013.03.037.
Yu, Q. M. 2015. “Influence of the stress state on void nucleation and subsequent growth around inclusion in ductile material.” Int. J. Fract. 193 (1): 43–57. https://doi.org/10.1007/s10704-015-0016-3.
Zhang, K. S., J. Bai, and D. François. 2001. “Numerical analysis of the influence of the Lode parameter on void growth.” Int. J. Solids Struct. 38 (32–33): 5847–5856. https://doi.org/10.1016/S0020-7683(00)00391-7.
Zhano, K. S., and Z. H. Li. 1994. “Numerical analysis of the stress–strain curve and fracture initiation for ductile material.” Eng. Fract. Mech. 49 (2): 235–241. https://doi.org/10.1016/0013-7944(94)90006-X.

Information & Authors

Information

Published In

Go to Journal of Structural Engineering
Journal of Structural Engineering
Volume 146Issue 6June 2020

History

Received: Mar 21, 2019
Accepted: Nov 26, 2019
Published online: Apr 3, 2020
Published in print: Jun 1, 2020
Discussion open until: Sep 3, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

De-Yang Kong
Ph.D. Candidate, School of Civil Engineering, Chongqing Univ., No. 83, Shabei St., Shapingba District, Chongqing 400045, China.
Professor, School of Civil Engineering, Chongqing Univ., No. 83, Shabei St., Shapingba District, Chongqing 400045, China (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share