Technical Papers
Jan 30, 2023

Utilization of Glass Powder and Silica Fume in Sugarcane Bagasse Ash-Based Geopolymer for Soil Stabilization

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 4

Abstract

Geopolymers are considered a suitable alternative to portland cement due to their appropriate mechanical properties, the capacity of by-product/waste consumption, and significant contribution to reducing environmental pollution. This study aims to assess the impact of geopolymers based on sugarcane bagasse ash (SCBA) with glass powder (GP) and silica fume (SF) on the mechanical and microstructure properties of poor-graded sandy soils. The geopolymer specimens were prepared with different alkali-activators (NaOH and KOH) and cured for 7, 28, and 91 days to evaluate the effect of activator type and curing period on geopolymerization. The mechanical properties were determined by performing unconfined compressive strength (UCS) test, while scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to evaluate microstructure properties. The results revealed that increasing the SCBA content in the mix significantly improved the UCS and geopolymer gel formation. Also, GP and SF addition improved the UCS of SCBA-based geopolymer specimens. Moreover, toxicity characteristic leaching procedure (TCLP) results illustrate that SCBA-based geopolymer has good environmental performance. Thus, this study has the potential to develop a new eco-friendly geopolymer by using large-volume discarded SCBA and GP for soil stabilization.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request, including all materials used in the research, compressive strength of some specimens (video), microstructure analysis results, and results of Taguchi analysis (Minitab results).

References

Abna, A., and M. Mazloom. 2022. “Flexural properties of fiber reinforced concrete containing silica fume and nano-silica.” Mater. Lett. 316 (Jun): 132003. https://doi.org/10.1016/j.matlet.2022.132003.
Agwa, I. S., A. M. Zeyad, B. A. Tayeh, A. Adesina, A. R. de Azevedo, M. Amin, and M. Hadzima-Nyarko. 2022. “A comprehensive review on the use of sugarcane bagasse ash as a supplementary cementitious material to produce eco-friendly concretes.” Mater. Today: Proc. 65 (2): 688–696. https://doi.org/10.1016/j.matpr.2022.03.264.
Al-Rawas, A. A. 2002. “Microfabric and mineralogical studies on the stabilization of an expansive soil using cement by-pass dust and some types of slags.” Can. Geotech. J. 39 (5): 1150–1167. https://doi.org/10.1139/t02-046.
Amin, N. U., M. Faisal, K. Muhammad, and S. Gul. 2016. “Synthesis and characterization of geopolymer from bagasse bottom ash, waste of sugar industries and naturally available china clay.” J. Cleaner Prod. 129 (Aug): 491–495. https://doi.org/10.1016/j.jclepro.2016.04.024.
Amini, O., and M. Ghasemi. 2019. “Laboratory study of the effects of using magnesium slag on the geotechnical properties of cement stabilized soil.” Constr. Build. Mater. 223 (Oct): 409–420. https://doi.org/10.1016/j.conbuildmat.2019.07.011.
Arulrajah, A., J. Piratheepan, M. M. Disfani, and M. W. Bo. 2013. “Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications.” J. Mater. Civ. Eng. 25 (8): 1077–1088. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000652.
Ashraf, M., M. F. Iqbal, M. Rauf, M. U. Ashraf, A. Ulhaq, H. Muhammad, and Q.-F. Liu. 2022. “Developing a sustainable concrete incorporating bentonite clay and silica fume: Mechanical and durability performance.” J. Cleaner Prod. 337 (Feb): 130315. https://doi.org/10.1016/j.jclepro.2021.130315.
ASTM. 2003. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM C618. West Conshohocken, PA: ASTM.
ASTM. 2007a. Standard test method for particle-size analysis of soils. ASTM D422-63. West Conshohocken, PA: ASTM.
ASTM. 2007b. Standard test methods for laboratory compaction characteristics of soil using standard effort (12,400 Ft-lbf/ft3 (600 KN-m/m3)). ASTM D698-07. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test method for unconfined compressive strength of cohesive soil. ASTM D2166. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard practice for classification of soils for engineering purposes (unified soil classification system) 1. ASTM D2487-17. West Conshohocken, PA: ASTM.
Bahurudeen, A., K. Wani, M. A. Basit, and M. Santhanam. 2016. “Assessment of pozzolanic performance of sugarcane bagasse ash.” J. Mater. Civ. Eng. 28 (2): 04015095. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001361.
Bell, F. 1996. “Lime stabilization of clay minerals and soils.” Eng. Geol. 42 (4): 223–237. https://doi.org/10.1016/0013-7952(96)00028-2.
Bilondi, M. P., M. M. Toufigh, and V. Toufigh. 2018. “Experimental investigation of using a recycled glass powder-based geopolymer to improve the mechanical behavior of clay soils.” Constr. Build. Mater. 170 (May): 302–313. https://doi.org/10.1016/j.conbuildmat.2018.03.049.
Biswal, U. S., and P. Dinakar. 2022. “Influence of metakaolin and silica fume on the mechanical and durability performance of high-strength concrete made with 100% coarse recycled aggregate.” J. Hazard. Toxic Radioact. Waste 26 (2): 04022004. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000687.
Capasso, I., S. Lirer, A. Flora, C. Ferone, R. Cioffi, D. Caputo, and B. Liguori. 2019. “Reuse of mining waste as aggregates in fly ash-based geopolymers.” J. Cleaner Prod. 220 (May): 65–73. https://doi.org/10.1016/j.jclepro.2019.02.164.
Chandel, A. K., S. S. da Silva, W. Carvalho, and O. V. Singh. 2012. “Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products.” J. Chem. Technol. Biotechnol. 87 (1): 11–20. https://doi.org/10.1002/jctb.2742.
Clements, C., A. Hedayat, and L. Tunstall. 2022. “Microstructure and dissolution of aluminosilicate geopolymers made from mine tailings source material.” In Geo-Congress 2022, 655–663. Reston, VA: ASCE. https://doi.org/10.1061/9780784484012.066.
Corrêa-Silva, M., T. Miranda, M. Rouainia, N. Araújo, S. Glendinning, and N. Cristelo. 2020. “Geomechanical behaviour of a soft soil stabilised with alkali-activated blast-furnace slags.” J. Cleaner Prod. 267 (Sep): 122017. https://doi.org/10.1016/j.jclepro.2020.122017.
Cristelo, N., S. Glendinning, T. Miranda, D. Oliveira, and R. Silva. 2012. “Soil stabilisation using alkaline activation of fly ash for self compacting rammed earth construction.” Constr. Build. Mater. 36 (Nov): 727–735. https://doi.org/10.1016/j.conbuildmat.2012.06.037.
da Silva Godinho, D. D. S., F. Pelisser, and A. M. Bernardin. 2022. “High temperature performance of geopolymers as a function of the Si/Al ratio and alkaline media.” Mater. Lett. 311 (Mar): 131625. https://doi.org/10.1016/j.matlet.2021.131625.
Davidovits, J. 1991. “Geopolymers: Inorganic polymeric new materials.” J. Therm. Anal. Calorim. 37 (8): 1633–1656. https://doi.org/10.1007/BF01912193.
Davidovits, J. 2015. Geopolymer chemistry and applications. 4th ed. Saint-Quentin, France: Geopolymer Institute.
Deepika, S., G. Anand, A. Bahurudeen, and M. Santhanam. 2017. “Construction products with sugarcane bagasse ash binder.” J. Mater. Civ. Eng. 29 (10): 04017189. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001999.
Detphan, S., and P. Chindaprasirt. 2009. “Preparation of fly ash and rice husk ash geopolymer.” Int. J. Miner. Metall. Mater. 16 (6): 720–726.
Diaz, E., E. Allouche, and S. Eklund. 2010. “Factors affecting the suitability of fly ash as source material for geopolymers.” Fuel 89 (5): 992–996. https://doi.org/10.1016/j.fuel.2009.09.012.
Dilbas, H., and Ö. Çakır. 2021. “Physical and mechanical properties of treated recycled aggregate concretes: Combination of mechanical treatment and silica fume.” J. Mater. Civ. Eng. 33 (6): 04021096. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003658.
Duan, P., C. Yan, and W. Zhou. 2017. “Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle.” Cem. Concr. Compos. 78 (Apr): 108–119. https://doi.org/10.1016/j.cemconcomp.2017.01.009.
Esparham, A., A. B. Moradikhou, and M. Jamshidi Avanaki. 2020. “Effect of various alkaline activator solutions on compressive strength of fly ash-based geopolymer concrete.” J. Civ. Eng. Mater. Appl. 4 (2): 115–123. https://doi.org/10.22034/jcema.2020.224071.1018.
Ganesan, K., K. Rajagopal, and K. Thangavel. 2007. “Evaluation of bagasse ash as supplementary cementitious material.” Cem. Concr. Compos. 29 (6): 515–524. https://doi.org/10.1016/j.cemconcomp.2007.03.001.
Ghosh, A., and C. Subbarao. 2006. “Tensile strength bearing ratio and slake durability of class F fly ash stabilized with lime and gypsum.” J. Mater. Civ. Eng. 18 (1): 18–27. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:1(18).
Goldstein, J. I., D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy. 2017. Scanning electron microscopy and X-ray microanalysis. New York: Springer.
Goodarzi, A., H. Akbari, and M. Salimi. 2016. “Enhanced stabilization of highly expansive clays by mixing cement and silica fume.” Appl. Clay Sci. 132–133 (Nov): 675–684. https://doi.org/10.1016/j.clay.2016.08.023.
Hajimohammadi, A., J. L. Provis, and J. S. van Deventer. 2011. “The effect of silica availability on the mechanism of geopolymerisation.” Cem. Concr. Res. 41 (3): 210–216. https://doi.org/10.1016/j.cemconres.2011.02.001.
Hasan, H., L. Dang, H. Khabbaz, B. Fatahi, and S. Terzaghi. 2016. “Remediation of expansive soils using agricultural waste bagasse ash.” Procedia Eng. 143 (Jan): 1368–1375. https://doi.org/10.1016/j.proeng.2016.06.161.
Horpibulsuk, S., R. Rachan, A. Chinkulkijniwat, Y. Raksachon, and A. Suddeepong. 2010. “Analysis of strength development in cement-stabilized silty clay from microstructural considerations.” Constr. Build. Mater. 24 (10): 2011–2021. https://doi.org/10.1016/j.conbuildmat.2010.03.011.
Imbabi, M. S., C. Carrigan, and S. McKenna. 2012. “Trends and developments in green cement and concrete technology.” Int. J. Sustainable Built Environ. 1 (2): 194–216. https://doi.org/10.1016/j.ijsbe.2013.05.001.
Jamsawang, P., H. Poorahong, N. Yoobanpot, S. Songpiriyakij, and P. Jongpradist. 2017. “Improvement of soft clay with cement and bagasse ash waste.” Constr. Build. Mater. 154 (Nov): 61–71. https://doi.org/10.1016/j.conbuildmat.2017.07.188.
Jang, J., A. J. Puppala, N. Biswas, S. Chakraborty, and M. Radovic. 2022. “Utilization of metakaolin-based geopolymers for stabilization of sulfate-rich expansive soils.” In Geo-Congress 2022, 222–231. Reston, VA: ASCE.
Jang, J., A. J. Puppala, S. Chakraborty, N. Biswas, O. Huang, and M. Radovic. 2021. “Eco-friendly stabilization of sulfate-rich expansive soils using geopolymers for transportation infrastructure.” In Proc., Tran-SET 2021, 223–231. Reston, VA: ASCE.
Khedr, S. A., and M. N. Abou-Zeid. 1994. “Characteristics of silica-fume concrete.” J. Mater. Civ. Eng. 6 (3): 357–375. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:3(357).
Kishor, R., V. Singh, and R. Srivastava. 2022. “Mitigation of expansive soil by liquid alkaline activator using rice husk ash, sugarcane bagasse ash for highway subgrade.” Int. J. Pavement Res. Technol. 15 (4): 915–930. https://doi.org/10.1007/s42947-021-00062-w.
Komnitsas, K. A. 2011. “Potential of geopolymer technology towards green buildings and sustainable cities.” Procedia Eng. 21 (Jan): 1023–1032. https://doi.org/10.1016/j.proeng.2011.11.2108.
Li, J., W. Zhang, C. Li, and P. J. Monteiro. 2019. “Green concrete containing diatomaceous earth and limestone: Workability, mechanical properties, and life-cycle assessment.” J. Cleaner Prod. 223 (Jun): 662–679. https://doi.org/10.1016/j.jclepro.2019.03.077.
Liu, G., M. Florea, and H. Brouwers. 2019. “Waste glass as binder in alkali activated slag–fly ash mortars.” Mater. Struct. 52 (5): 1–12. https://doi.org/10.1617/s11527-019-1404-3.
Liu, Y., B. Chen, and Z. Qin. 2021. “Characterization of magnesium phosphate cement incorporating waste glass powder as mineral admixture.” J. Mater. Civ. Eng. 33 (3): 04020495. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003570.
Lori, I. S., M. M. Toufigh, and V. Toufigh. 2021. “Improvement of poorly graded sandy soil by using copper mine tailing dam sediments-based geopolymer and silica fume.” Constr. Build. Mater. 281 (Apr): 122591. https://doi.org/10.1016/j.conbuildmat.2021.122591.
Maddalena, R., J. J. Roberts, and A. Hamilton. 2018. “Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements.” J. Cleaner Prod. 186 (Jun): 933–942. https://doi.org/10.1016/j.jclepro.2018.02.138.
Mahmoudi Kordi, A., and V. Toufigh. 2019. “Sandy soil stabilization with copper slag-based geopolymer and copper slag and silica fume blend geopolymer.” Sharif J. Civ. Eng. 35 (1.1): 129–138. https://doi.org/10.24200/J30.2018.1999.2057.
Maragkos, I., I. P. Giannopoulou, and D. Panias. 2009. “Synthesis of ferronickel slag-based geopolymers.” Miner. Eng. 22 (2): 196–203. https://doi.org/10.1016/j.mineng.2008.07.003.
Marcin, M., M. Sisol, and I. Brezani. 2018. “Effect of waste glass addition on mechanical properties of slag based geopolymers.” IOP Conf. Ser.: Mater. Sci. Eng. 379 (1): 012013. https://doi.org/10.1088/1757-899X/379/1/012013.
McLellan, B. C., R. P. Williams, J. Lay, A. Van Riessen, and G. D. Corder. 2011. “Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement.” J. Cleaner Prod. 19 (9–10): 1080–1090. https://doi.org/10.1016/j.jclepro.2011.02.010.
Mypati, V. N., and S. Saride. 2022. “Feasibility of alkali-activated low-calcium fly ash as a binder for deep soil mixing.” J. Mater. Civ. Eng. 34 (1): 04021410. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004047.
Nassar, R. U. D., and P. Soroushian. 2012. “Strength and durability of recycled aggregate concrete containing milled glass as partial replacement for cement.” Constr. Build. Mater. 29 (Apr): 368–377. https://doi.org/10.1016/j.conbuildmat.2011.10.061.
Pascual, A. B., M. T. Tognonvi, and A. Tagnit-Hamou. 2014. “Waste glass powder-based alkali-activated mortar.” Int. J. Res. Eng. Technol. 3 (13): 32–36. https://doi.org/10.15623/ijret.2014.0325006.
Phair, J., and J. Van Deventer. 2002. “Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers.” Int. J. Miner. Process. 66 (1–4): 121–143. https://doi.org/10.1016/S0301-7516(02)00013-3.
Prusty, J. K., and B. Pradhan. 2020. “Multi-response optimization using Taguchi-Grey relational analysis for composition of fly ash-ground granulated blast furnace slag based geopolymer concrete.” Constr. Build. Mater. 241 (Apr): 118049. https://doi.org/10.1016/j.conbuildmat.2020.118049.
Puppala, A. J., R. Kadam, R. S. Madhyannapu, and L. R. Hoyos. 2006. “Small-strain shear moduli of chemically stabilized sulfate-bearing cohesive soils.” J. Geotech. Geoenviron. Eng. 132 (3): 322–336. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(322).
Rajan, H. S., and P. Kathirvel. 2021. “Sustainable development of geopolymer binder using sodium silicate synthesized from agricultural waste.” J. Cleaner Prod. 286 (Mar): 124959. https://doi.org/10.1016/j.jclepro.2020.124959.
Sabbagh Gol, M., and V. Toufigh. 2019. “Feasibility study of sandy soil stabilization with glass powder and natural pozzolan based geopolymer.” Amirkabir J. Civ. Eng. 51 (1): 169–182. https://doi.org/10.22060/ceej.2018.13086.5325.
Sánchez-Sánchez, A., M. Cerdán, J. Jordá, B. Amat, and J. Cortina. 2019. “Characterization of soil mineralogy by FTIR: Application to the analysis of mineralogical changes in soils affected by vegetation patches.” Plant Soil 439 (1): 447–458. https://doi.org/10.1007/s11104-019-04061-6.
Sariosseiri, F., and B. Muhunthan. 2009. “Effect of cement treatment on geotechnical properties of some Washington State soils.” Eng. Geol. 104 (1–2): 119–125. https://doi.org/10.1016/j.enggeo.2008.09.003.
Sayed, M., and S. R. Zeedan. 2012. “Green binding material using alkali activated blast furnace slag with silica fume.” HBRC J. 8 (3): 177–184. https://doi.org/10.1016/j.hbrcj.2012.10.003.
Schwarz, N., H. Cam, and N. Neithalath. 2008. “Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash.” Cem. Concr. Compos. 30 (6): 486–496. https://doi.org/10.1016/j.cemconcomp.2008.02.001.
Scrivener, K. L., and R. J. Kirkpatrick. 2008. “Innovation in use and research on cementitious material.” Cem. Concr. Res. 38 (2): 128–136. https://doi.org/10.1016/j.cemconres.2007.09.025.
Shayan, A., and A. Xu. 2006. “Performance of glass powder as a pozzolanic material in concrete: A field trial on concrete slabs.” Cem. Concr. Res. 36 (3): 457–468. https://doi.org/10.1016/j.cemconres.2005.12.012.
Si, R., Q. Dai, S. Guo, and J. Wang. 2020. “Mechanical property, nanopore structure and drying shrinkage of metakaolin-based geopolymer with waste glass powder.” J. Cleaner Prod. 242 (Jan): 118502. https://doi.org/10.1016/j.jclepro.2019.118502.
Sinyoung, S., S. Asavapisit, and K. Kunchariyakun. 2022. “Investigation of bagasse ash as an alternative raw material in clinker production.” J. Mater. Civ. Eng. 34 (2): 04021433. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004073.
Spagnoli, G., E. Romero, A. Fraccica, M. Arroyo, and R. Gómez. 2022. “The effect of curing conditions on the hydromechanical properties of a metakaolin-based soilcrete.” Géotechnique 72 (5): 455–469. https://doi.org/10.1680/jgeot.20.P.259.
Tho-In, T., V. Sata, K. Boonserm, and P. Chindaprasirt. 2018. “Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash.” J. Cleaner Prod. 172 (Jan): 2892–2898. https://doi.org/10.1016/j.jclepro.2017.11.125.
Toufigh, V., M. Barzegari Dehaji, and K. Jafari. 2020. “Experimental investigation of stabilisation of soils with Taftan pozzolan.” Eur. J. Environ. Civ. Eng. 24 (9): 1339–1362. https://doi.org/10.1080/19648189.2018.1467345.
Ulugöl, H., A. Kul, G. Yıldırım, M. Şahmaran, A. Aldemir, D. Figueira, and A. Ashour. 2021. “Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste-based masonry and glass.” J. Cleaner Prod. 280 (Jan): 124358. https://doi.org/10.1016/j.jclepro.2020.124358.
USEPA. 1992. Method 1311: Toxicity characteristic leaching procedure. Washington, DC: USEPA.
Van Jaarsveld, J., J. S. Van Deventer, and G. Lukey. 2002. “The effect of composition and temperature on the properties of fly ash-and kaolinite-based geopolymers.” Chem. Eng. J. 89 (1–3): 63–73. https://doi.org/10.1016/S1385-8947(02)00025-6.
Xiao, R., P. Polaczyk, M. Zhang, X. Jiang, Y. Zhang, B. Huang, and W. Hu. 2020. “Evaluation of glass powder-based geopolymer stabilized road bases containing recycled waste glass aggregate.” Transp. Res. Rec. 2674 (1): 22–32. https://doi.org/10.1177/0361198119898695.
Xing, Z., K. Tian, C. Du, C. Li, J. Zhou, and Z. Chen. 2019. “Agricultural soil characterization by FTIR spectroscopy at micrometer scales: Depth profiling by photoacoustic spectroscopy.” Geoderma 335 (Feb): 94–103. https://doi.org/10.1016/j.geoderma.2018.08.003.
Xu, H., and J. Van Deventer. 2000. “The geopolymerisation of alumino-silicate minerals.” Int. J. Miner. Process. 59 (3): 247–266. https://doi.org/10.1016/S0301-7516(99)00074-5.
Yadav, A. K., K. Gaurav, R. Kishor, and S. Suman. 2017. “Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads.” Int. J. Pavement Res. Technol. 10 (3): 254–261. https://doi.org/10.1016/j.ijprt.2017.02.001.
Yang, Q., C. Du, J. Zhang, and G. Yang. 2020. “Influence of silica fume and additives on unconfined compressive strength of cement-stabilized marine soft clay.” J. Mater. Civ. Eng. 32 (2): 04019346. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003010.
Yang, S., B. Qi, Z. Ai, Z. Cao, S. He, and L. Li. 2022. “Mechanical properties and microcosmic properties of self-compacting concrete modified by compound admixtures.” J. Renewable Mater. 10 (4): 897–908. https://doi.org/10.32604/jrm.2022.016653.
Yang, T., H. Zhu, and Z. Zhang. 2017. “Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars.” Constr. Build. Mater. 153 (Oct): 284–293. https://doi.org/10.1016/j.conbuildmat.2017.05.067.
Yao, J., H. Qiu, H. He, X. Chen, and G. Hao. 2021. “Application of a soft soil stabilized by composite geopolymer.” J. Perform. Constr. Facil. 35 (4): 04021018. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001586.
Yaseen, N., M. Irfan-ul-Hassan, A.-U.-R. Saeed, S. A. Rizwan, and M. Afzal. 2022. “Sustainable development and performance assessment of clay-based geopolymer bricks incorporating fly ash and sugarcane bagasse ash.” J. Mater. Civ. Eng. 34 (4): 04022036. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004159.
Yi, Y., X. Zheng, S. Liu, and A. Al-Tabbaa. 2015. “Comparison of reactive magnesia- and carbide slag-activated ground granulated blastfurnace slag and Portland cement for stabilisation of a natural soil.” Appl. Clay Sci. 111 (Jul): 21–26. https://doi.org/10.1016/j.clay.2015.03.023.
Zhang, M., H. Guo, T. El-Korchi, G. Zhang, and M. Tao. 2013. “Experimental feasibility study of geopolymer as the next-generation soil stabilizer.” Constr. Build. Mater. 47 (Oct): 1468–1478. https://doi.org/10.1016/j.conbuildmat.2013.06.017.
Zhang, N., A. Hedayat, H. G. B. Sosa, R. P. H. Bernal, N. Tupa, I. Y. Morales, and R. S. C. Loza. 2021. “On the incorporation of class F fly-ash to enhance the geopolymerization effects and splitting tensile strength of the gold mine tailings-based geopolymer.” Constr. Build. Mater. 308 (Nov): 125112. https://doi.org/10.1016/j.conbuildmat.2021.125112.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 4April 2023

History

Received: Apr 28, 2022
Accepted: Aug 4, 2022
Published online: Jan 30, 2023
Published in print: Apr 1, 2023
Discussion open until: Jun 30, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Seyed Javad Ramezani [email protected]
Graduate Student, Dept. of Civil Engineering, Shahid Bahonar Univ. of Kerman, Kerman 7613665143, Iran (corresponding author). Email: [email protected]
Mohammad Mohsen Toufigh [email protected]
Professor, Dept. of Civil Engineering, Shahid Bahonar Univ. of Kerman, Kerman 7616913439, Iran. Email: [email protected]
Vahid Toufigh [email protected]
Associate Professor, Faculty of Civil and Surveying Engineering, Graduate Univ. of Advanced Technology, Kerman 7631885356, Iran. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Experimental Investigation of the Rheological Properties, Interaction, and Microstructure Characteristics of Emulsified Asphalt with Red Mud–Based Geopolymer, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-17182, 36, 5, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share