Technical Papers
Jan 30, 2023

Investigation of the Effect of Combined Nanosilica and Iranian Natural Binder on the Rheological Behavior of Mastics and Performance of Asphalt Mixtures

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 4

Abstract

The aim of this study was to evaluate the impact of nanosilica (NS) and gilsonite on the behavior of asphalt binders and stone matrix asphalt (SMA) samples. An asphalt binder with 60/70 penetration grade, 0%, 3%, 5%, and 7% gilsonite, and 0%, 2%, 4%, and 6% NS by the weight of the asphalt binder were used. The rotational viscosity (RV), linear amplitude sweep (LAS), bending beam rheometer (BBR), multiple stress creep recovery (MSCR), and dynamic shear rheometer (DSR) tests were applied to evaluate the physical and rheological behaviors of modified asphalt binders. Also, the wheel track, dynamic creep, indirect tensile strength (ITS), resilient modulus (Mr), and four-point bending (FPB) fatigue tests were utilized to examine the performance characteristics of mixtures. Moreover, a two-factor analysis of variance (ANOVA) was used to analyze the data. The rheological test results showed that gilsonite and NS enhanced the rutting and fatigue resistances of asphalt binders. Gilsonite also reduced the low-temperature resistance of asphalt binders, while NS improved that. The storage stability test showed that gilsonite enhanced the storage stability of asphalt binders. Also, adding NS led to an improvement in phase separation. MSCR test indicated an improvement in the high-temperature performance of base asphalt binder at different stress levels by the addition of gilsonite and NS. Based on the LAS test, gilsonite and NS enhanced the fatigue characteristics of asphalt binders. The sample test results also showed that gilsonite and NS improved the permanent deformation resistance, MR, ITS, fracture energy, and intermediate-temperature properties of samples.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

AASHTO. 2019. Standard method of test for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. AASHTO T 96. Washington, DC: AASHTO.
AASHTO. 2022. Standard method of test for Hamburg wheel-track testing of compacted asphalt mixtures. AASHTO T-324. Washington, DC: AASHTO.
Adedeji, A., T. Grünfelder, F. Bates, C. Macosko, M. Stroup-Gardiner, and D. Newcomb. 1996. “Asphalt modified by SBS triblock copolymer: Structures and properties.” Polym. Eng. Sci. 36 (12): 1707–1723. https://doi.org/10.1002/pen.10567.
Albayati, A. H., H. M. Al-Mosawe, A. A. Allawi, and N. Oukaili. 2018. “Moisture susceptibility of sustainable warm mix asphalt.” In Advances in civil engineering 2018. London: Hindawi.
Al-Sabaeei, A. M., M. B. Napiah, M. H. Sutanto, W. S. Alaloul, S. E. Zoorob, and A. Usman. 2020. “Influence of nanosilica particles on the high-temperature performance of waste denim fibre-modified bitumen.” Int. J. Pavement Eng. 23 (2): 207–220. https://doi.org/10.1080/10298436.2020.1737060.
Al-Sabaeei, A. M., M. B. Napiah, M. H. Sutanto, W. S. Alaloul, S. E. Zoorob, and A. Usman. 2022. “Influence of nanosilica particles on the high-temperature performance of waste denim fibre-modified bitumen.” Int. J. Pavement Eng. 23 (2): 207–220. https://doi.org/10.1080/10298436.2020.1737060.
Ameli, A., R. Babagoli, M. Khabooshani, R. AliAsgari, and F. Jalali. 2020a. “Permanent deformation performance of binders and stone mastic asphalt mixtures modified by SBS/montmorillonite nanocomposite.” Constr. Build. Mater. 239 (Apr): 117700. https://doi.org/10.1016/j.conbuildmat.2019.117700.
Ameli, A., R. Babagoli, N. Norouzi, F. Jalali, and F. P. Mamaghani. 2020b. “Laboratory evaluation of the effect of coal waste ash (CWA) and rice husk ash (RHA) on performance of asphalt mastics and Stone matrix asphalt (SMA) mixture.” Constr. Build. Mater. 236 (Mar): 117557. https://doi.org/10.1016/j.conbuildmat.2019.117557.
Ameli, A., J. Maher, A. Mosavi, N. Nabipour, R. Babagoli, and N. Norouzi. 2020c. “Performance evaluation of binders and stone matrix asphalt (SMA) mixtures modified by ground tire rubber (GTR), waste polyethylene terephthalate (PET) and anti stripping agents (ASAs).” Constr. Build. Mater. 251 (Aug): 118932. https://doi.org/10.1016/j.conbuildmat.2020.118932.
Ameri, M., A. Mansourian, S. S. Ashani, and G. Yadollahi. 2011. “Technical study on the Iranian Gilsonite as an additive for modification of asphalt binders used in pavement construction.” Constr. Build. Mater. 25 (3): 1379–1387. https://doi.org/10.1016/j.conbuildmat.2010.09.005.
Ameri, M., A. Mansourian, and A. H. Sheikhmotevali. 2012. “Investigating effects of ethylene vinyl acetate and gilsonite modifiers upon performance of base bitumen using Superpave tests methodology.” Constr. Build. Mater. 36 (Jun): 1001–1007. https://doi.org/10.1016/j.conbuildmat.2012.04.137.
Ameri, M., D. Mirzaiyan, and A. Amini. 2018. “Rutting resistance and fatigue behavior of gilsonite-modified asphalt binders.” J. Mater. Civ. Eng. 30 (11): 04018292. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002468.
Asadi, B., N. Tabatabaee, and R. Hajj. 2021. “Use of linear amplitude sweep test as a damage tolerance or fracture test to determine the optimum content of asphalt rejuvenator.” Constr. Build. Mater. 300 (Sep): 123983. https://doi.org/10.1016/j.conbuildmat.2021.123983.
ASTM. 2005. Standard practice for determining the separation tendency of polymer from polymer modified asphalt. West Conshohocken, PA: ASTM.
ASTM. 2010. Standard test method for softening point of bitumen (ring-and-ball apparatus). ASTM D36. West Conshohocken, PA: ASTM.
ASTM. 2012. Sulfur in organic and inorganic materials by combustion and IR detection. ASTM UOP 864. West Conshohocken, PA: ASTM.
ASTM. 2016a. Standard test method for penetration of bituminous materials. ASTM D5. West Conshohocken, PA: ASTM.
ASTM. 2016b. Standard test method for relative density (specific gravity) and absorption of coarse aggregate. ASTM C127. West Conshohocken, PA: ASTM.
ASTM. 2016c. Standard test method for relative density (specific gravity) and absorption of fine aggregate. ASTM C128. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard test method for density of semi-solid and solid asphalt materials (Nickel Crucible method). ASTM D3289. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test method for determining the percentage of fractured particles in coarse aggregate. ASTM D5821. West Conshohocken, PA: ASTM.
ASTM. 2017c. Standard test method for moisture in the analysis sample of coal and coke. ASTM 3173. West Conshohocken, PA: ASTM.
ASTM. 2017d. Standard test method for penetration of bituminous materials. ASTM D5. West Conshohocken, PA: ASTM.
ASTM. 2018a. Standard test method for density of semi-solid asphalt binder (pycnometer method). ASTM D70. West Conshohocken, PA: ASTM.
ASTM. 2018b. Standard test method for ductility of asphalt materials. ASTM D113. West Conshohocken, PA: ASTM.
ASTM. 2018c. Standard test method for flash and fire points by Cleveland open cup tester. ASTM D92. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard test method for ash in the analysis sample of coal and coke from coal. ASTM D3174. West Conshohocken, PA: ASTM.
ASTM. 2021. Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in petroleum products and lubricants. ASTM D5291. West Conshohocken, PA: ASTM.
ASTM. 2022. Standard test method for solubility of asphalt materials in trichloroethylene or toluene. ASTM D2042. West Conshohocken, PA: ASTM.
Babagoli, R., M. Hasaninia, and N. Mohammad Namazi. 2015. “Laboratory evaluation of the effect of Gilsonite on the performance of stone matrix asphalt mixtures.” Road Mater. Pavement Des. 16 (4): 889–906. https://doi.org/10.1080/14680629.2015.1042016.
Babagoli, R., and R. Mohammadi. 2017. “Laboratory evaluation of the effect of styrene-butadiene-styrene–montmorillonite nanocomposite on rheological behavior of bitumen and performance of stone matrix asphalt mixtures.” Can. J. Civ. Eng. 44 (9): 736–742. https://doi.org/10.1139/cjce-2017-0041.
Babagoli, R., and H. Ziari. 2017. “Evaluation of rutting performance of stone matrix asphalt mixtures containing warm mix additives.” J. Cent. South Univ. 24 (2): 360–373. https://doi.org/10.1007/s11771-017-3438-4.
Badroodi, S. K., M. R. Keymanesh, and G. Shafabakhsh. 2020. “Experimental investigation of the fatigue phenomenon in nano silica-modified warm mix asphalt containing recycled asphalt considering self-healing behavior.” Constr. Build. Mater. 246 (Jun): 117558. https://doi.org/10.1016/j.conbuildmat.2019.117558.
Bala, N., I. Kamaruddin, M. Napiah, and M. H. Sutanto. 2019. “Polymer nanocomposite-modified asphalt: Characterisation and optimisation using response surface methodology.” Arab. J. Sci. Eng. 44 (5): 4233–4243. https://doi.org/10.1007/s13369-018-3377-x.
Baldi-Sevilla, A., M. L. Montero, J. P. Aguiar, and L. G. Loría. 2016. “Influence of nanosilica and diatomite on the physicochemical and mechanical properties of binder at unaged and oxidized conditions.” Constr. Build. Mater. 127 (Nov): 176–182. https://doi.org/10.1016/j.conbuildmat.2016.09.140.
Bennert, T., E. Haas, and E. Wass. 2018. “Indirect tensile test (IDT) to determine asphalt mixture performance indicators during quality control testing in New Jersey.” Transp. Res. Rec. 2672 (28): 394–403. https://doi.org/10.1177/0361198118793276.
Brown, E., and L. Cooley. 1999. Designing stone matrix asphalt mixtures for rut-resistant pavements. Washington, DC: Transportation Research Board.
Button, J. W., C. P. Hastings, and D. N. Little. 1993. Effects of asphalt additives on pavement performance. Austin, TX: Texas DOT.
Cai, L., X. Shi, and J. Xue. 2018. “Laboratory evaluation of composed modified asphalt binder and mixture containing nano-silica/rock asphalt/SBS.” Constr. Build. Mater. 172 (May): 204–211. https://doi.org/10.1016/j.conbuildmat.2018.03.187.
Caputo, P., A. A. Abe, V. Loise, M. Porto, P. Calandra, R. Angelico, and C. Oliviero Rossi. 2020. “The role of additives in warm mix asphalt technology: An insight into their mechanisms of improving an emerging technology.” Nanomaterials 10 (6): 1202. https://doi.org/10.3390/nano10061202.
Chen, L., G. Liu, B. Yao, and Z. Qian. 2021. “Rutting prediction model for semirigid base asphalt pavement based on Hamburg wheel tracking test.” Int. J. Geomech. 21 (11): 04021215. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002194.
Cheng, H., L. Liu, and L. Sun. 2022. “Bridging the gap between laboratory and field moduli of asphalt layer for pavement design and assessment: A comprehensive loading frequency-based approach.” In Frontiers of structural and civil engineering, 1–14. New York: Springer.
Cheng, H., L. Sun, Y. Wang, and X. Chen. 2021. “Effects of actual loading waveforms on the fatigue behaviours of asphalt mixtures.” Int. J. Fatigue 151 (Oct): 106386. https://doi.org/10.1016/j.ijfatigue.2021.106386.
Dan, H.-C., Z. Zhang, J.-Q. Chen, and H. Wang. 2018. “Numerical simulation of an indirect tensile test for asphalt mixtures using discrete element method software.” J. Mater. Civ. Eng. 30 (5): 04018067. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002252.
Diab, A., N. Saboo, and L. You. 2022. “Moisture, rutting, and fatigue-cracking susceptibility of water-carrying, wax-based, and chemical-based warm mix asphalt systems.” J. Mater. Civ. Eng. 34 (6): 04022099. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004241.
Eriskin, E., S. Karahancer, S. Terzi, and M. Saltan. 2017. “Waste frying oil modified bitumen usage for sustainable hot mix asphalt pavement.” Arch. Civ. Mech. Eng. 17 (4): 863–870. https://doi.org/10.1016/j.acme.2017.03.006.
Ezzat, H., S. El-Badawy, A. Gabr, E.-S. I. Zaki, and T. Breakah. 2016. “Evaluation of asphalt binders modified with nanoclay and nanosilica.” Procedia Eng. 143 (Jan): 1260–1267. https://doi.org/10.1016/j.proeng.2016.06.119.
Fakhri, M., P. T. Kheiry, and A. Mirghasemi. 2012. “Modeling of the permanent deformation characteristics of SMA mixtures using discrete element method.” Road Mater. Pavement Des. 13 (1): 67–84. https://doi.org/10.1080/14680629.2011.644080.
Ferrotti, G., D. Ragni, X. Lu, and F. Canestrari. 2017. “Effect of warm mix asphalt chemical additives on the mechanical performance of asphalt binders.” Mater. Struct. 50 (5): 1–13. https://doi.org/10.1617/s11527-017-1096-5.
Hassanzadeh Khabbaz, E. 2020. “Laboratory evaluation of the performance of asphalt binder and mixture modified by nano-silica/Gilsonite/SBS.” J. Transp. Res. 17 (4): 49–60.
Honarmand, M., J. Tanzadeh, and M. Beiranvand. 2019. “Bitumen and its modifier for use in pavement engineering.” In Sustainable construction and building materials, 249–270. London: Intechopen.
Hung, A. M., F. Pahlavan, S. Shakiba, S. L. Y. Chang, S. M. Louie, and E. H. Fini. 2019. “Preventing assembly and crystallization of alkane acids at the silica–bitumen interface to enhance interfacial resistance to moisture damage.” Ind. Eng. Chem. Res. 58 (47): 21542–21552. https://doi.org/10.1021/acs.iecr.9b04890.
Ibrahim, M. R., H. Y. Katman, M. R. Karim, S. Koting, and N. S. Mashaan. 2013. A review on the effect of crumb rubber addition to the rheology of crumb rubber modified bitumen. In Advances in materials science and engineering 2013. London: Hindawi.
Jahanian, H., G. Shafabakhsh, and H. Divandari. 2017. “Performance evaluation of Hot Mix Asphalt (HMA) containing bitumen modified with Gilsonite.” Constr. Build. Mater. 131 (Jan): 156–164. https://doi.org/10.1016/j.conbuildmat.2016.11.069.
Jomoor, N. B., M. Fakhri, and M. R. Keymanesh. 2019. “Determining the optimum amount of recycled asphalt pavement (RAP) in warm stone matrix asphalt using dynamic creep test.” Constr. Build. Mater. 228 (Dec): 116736. https://doi.org/10.1016/j.conbuildmat.2019.116736.
Karami, M., H. Nikraz, S. Sebayang, and L. Irianti. 2018. “Laboratory experiment on resilient modulus of BRA modified asphalt mixtures.” Int. J. Pavement Res. Technol. 11 (1): 38–46. https://doi.org/10.1016/j.ijprt.2017.08.005.
Karnati, S. R., D. Oldham, E. H. Fini, and L. Zhang. 2020. “Application of surface-modified silica nanoparticles with dual silane coupling agents in bitumen for performance enhancement.” Constr. Build. Mater. 244 (May): 118324. https://doi.org/10.1016/j.conbuildmat.2020.118324.
Kim, H., and S.-J. Lee. 2013. “Laboratory investigation of different standards of phase separation in crumb rubber modified asphalt binders.” J. Mater. Civ. Eng. 25 (12): 1975–1978. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000751.
Kim, H. H., M. Mazumder, and S.-J. Lee. 2018. “Recycling of aged asphalt binders with wax warm additives.” Road Mater. Pavement Des. 19 (5): 1203–1215. https://doi.org/10.1080/14680629.2017.1294102.
Kim, T. W., J. Baek, H. J. Lee, and J. Y. Choi. 2013. “Fatigue performance evaluation of SBS modified mastic asphalt mixtures.” Constr. Build. Mater. 48 (Nov): 908–916. https://doi.org/10.1016/j.conbuildmat.2013.07.100.
Kök, B. V., M. Yilmaz, and M. Guler. 2011. “Evaluation of high temperature performance of SBS+ Gilsonite modified binder.” Fuel 90 (10): 3093–3099. https://doi.org/10.1016/j.fuel.2011.05.021.
Kök, B. V., M. Yílmaz, P. Turgut, and N. Kuloğlu. 2012. “Evaluation of the mechanical properties of natural asphalt-modified hot mixture.” Int. J. Mater. Res. 103 (4): 506–512. https://doi.org/10.3139/146.110654.
Lazzara, G., and S. Milioto. 2010. “Dispersions of nanosilica in biocompatible copolymers.” Polym. Degrad. Stab. 95 (4): 610–617. https://doi.org/10.1016/j.polymdegradstab.2009.12.007.
LeBaron, P. C., Z. Wang, and T. J. Pinnavaia. 1999. “Polymer-layered silicate nanocomposites: An overview.” Appl. Clay Sci. 15 (1–2): 11–29. https://doi.org/10.1016/S0169-1317(99)00017-4.
Liu, H., W. Zeiada, G. G. Al-Khateeb, H. Ezzet, A. Shanableh, and M. Samarai. 2021. “Analysis of MSCR test results for asphalt binders with improved accuracy.” Mater. Struct. 54 (2): 1–14. https://doi.org/10.1617/s11527-021-01691-0.
Liu, J., and P. Li. 2008. “Experimental study on gilsonite-modified asphalt.” In Airfield and highway pavements: Efficient pavements supporting transportation’s future, 222–228. Reston, VA: ASCE. https://doi.org/10.1061/41005(329)20.
Liu, Q., X. Yao, H. Cheng, and R. L. Frost. 2012. “An infrared spectroscopic comparison of four Chinese palygorskites.” Spectrochim. Acta, Part A 96 (Oct): 784–789. https://doi.org/10.1016/j.saa.2012.07.025.
Liu, X., F. Cao, F. Xiao, and S. Amirkhanian. 2018. “BBR and DSR testing of aging properties of polymer and polyphosphoric acid–modified asphalt binders.” J. Mater. Civ. Eng. 30 (10): 04018249. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002440.
Lv, Q., W. Huang, H. Sadek, F. Xiao, and C. Yan. 2019. “Investigation of the rutting performance of various modified asphalt mixtures using the Hamburg wheel-tracking device test and multiple stress creep recovery test.” Constr. Build. Mater. 206 (May): 62–70. https://doi.org/10.1016/j.conbuildmat.2019.02.015.
McDaniel, R. S. 2001. Asphalt additives to control rutting and cracking. West Lafayette, IN: Purdue Univ.
Mirzaiyan, D., M. Ameri, A. Amini, M. Sabouri, and A. Norouzi. 2019. “Evaluation of the performance and temperature susceptibility of gilsonite-and SBS-modified asphalt binders.” Constr. Build. Mater. 207 (May): 679–692. https://doi.org/10.1016/j.conbuildmat.2019.02.145.
Nasrekani, A. A., M. Nakhaei, K. Naderi, E. Fini, and S. Aflaki. 2017. “Improving moisture sensitivity of asphalt concrete using natural bitumen (Gilsonite).” In Proc., Transportation Research Board (TRB 2017), the 96th Annual Meeting, 8–12. Washington, DC: Transportation Research Board.
Norouzi, N., A. Ameli, and R. Babagoli. 2021. “Investigation of fatigue behaviour of warm modified binders and warm-stone matrix asphalt (WSMA) mixtures through binder and mixture tests.” Int. J. Pavement Eng. 22 (8): 1042–1051. https://doi.org/10.1080/10298436.2019.1659262.
Pereira, R., A. Almeida-Costa, C. Duarte, and A. Benta. 2018. “Warm mix asphalt: Chemical additives’ effects on bitumen properties and limestone aggregates mixture compactibility.” Int. J. Pavement Res. Technol. 11 (3): 285–299. https://doi.org/10.1016/j.ijprt.2017.10.005.
Qian, C., and W. Fan. 2020. “Evaluation and characterization of properties of crumb rubber/SBS modified asphalt.” Mater. Chem. Phys. 253 (Oct): 123319. https://doi.org/10.1016/j.matchemphys.2020.123319.
Qian, C., W. Fan, G. Yang, L. Han, B. Xing, and X. Lv. 2020. “Influence of crumb rubber particle size and SBS structure on properties of CR/SBS composite modified asphalt.” Constr. Build. Mater. 235 (Feb): 117517. https://doi.org/10.1016/j.conbuildmat.2019.117517.
Quintana, H. A. R., J. A. H. Noguera, and C. F. U. Bonells. 2016. “Behavior of gilsonite-modified hot mix asphalt by wet and dry processes.” J. Mater. Civ. Eng. 28 (2): 04015114. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001339.
Ray, S. S., and M. Okamoto. 2003. “Polymer/layered silicate nanocomposites: A review from preparation to processing.” Prog. Polym. Sci. 28 (11): 1539–1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002.
Ren, S., M. Liang, W. Fan, Y. Zhang, C. Qian, Y. He, and J. Shi. 2018. “Investigating the effects of SBR on the properties of gilsonite modified asphalt.” Constr. Build. Mater. 190 (Nov): 1103–1116. https://doi.org/10.1016/j.conbuildmat.2018.09.190.
Rondón-Quintana, H., C. Zafra-Majia, and S. Chaves-Pabón. 2019. “Performance characteristics and mechanical resistance of a hot mix asphalt using gilsonite and blast furnace slag.” Przegląd Naukowy Inżynieria i Kształtowanie Środowiska 28 (4): 86. https://doi.org/10.22630/PNIKS.2019.28.4.46.
Sabouri, M., D. Mirzaiyan, and A. Moniri. 2018. “Effectiveness of linear amplitude sweep (LAS) asphalt binder test in predicting asphalt mixtures fatigue performance.” Constr. Build. Mater. 171 (May): 281–290. https://doi.org/10.1016/j.conbuildmat.2018.03.146.
Shi, X., L. Cai, W. Xu, J. Fan, and X. Wang. 2018. “Effects of nano-silica and rock asphalt on rheological properties of modified bitumen.” Constr. Build. Mater. 161 (Feb): 705–714. https://doi.org/10.1016/j.conbuildmat.2017.11.162.
Sobhi, S., A. Yousefi, and A. Behnood. 2020. “The effects of Gilsonite and Sasobit on the mechanical properties and durability of asphalt mixtures.” Constr. Build. Mater. 238 (Mar): 117676. https://doi.org/10.1016/j.conbuildmat.2019.117676.
Suo, Z., and W. G. Wong. 2009. “Analysis of fatigue crack growth behavior in asphalt concrete material in wearing course.” Constr. Build. Mater. 23 (1): 462–468. https://doi.org/10.1016/j.conbuildmat.2007.10.025.
Tang, J., C. Zhu, H. Zhang, G. Xu, F. Xiao, and S. Amirkhanian. 2019. “Effect of liquid ASAs on the rheological properties of crumb rubber modified asphalt.” Constr. Build. Mater. 194 (Jan): 238–246. https://doi.org/10.1016/j.conbuildmat.2018.11.028.
Tang, N., W. Huang, M. Zheng, and J. Hu. 2017. “Investigation of Gilsonite-, polyphosphoric acid-and styrene–butadiene–styrene-modified asphalt binder using the multiple stress creep and recovery test.” Road Mater. Pavement Des. 18 (5): 1084–1097. https://doi.org/10.1080/14680629.2016.1206954.
Wang, Y., C. Wang, and H. Bahia. 2017. “Comparison of the fatigue failure behaviour for asphalt binder using both cyclic and monotonic loading modes.” Constr. Build. Mater. 151 (Oct): 767–774. https://doi.org/10.1016/j.conbuildmat.2017.06.144.
Xie, Z., and J. Shen. 2016. “Performance properties of rubberized stone matrix asphalt mixtures produced through different processes.” Constr. Build. Mater. 104 (Feb): 230–234. https://doi.org/10.1016/j.conbuildmat.2015.12.063.
Yan, Y., R. Roque, D. Hernando, and S. Chun. 2019. “Cracking performance characterisation of asphalt mixtures containing reclaimed asphalt pavement with hybrid binder.” Road Mater. Pavement Des. 20 (2): 347–366. https://doi.org/10.1080/14680629.2017.1393002.
Yao, H., Z. You, L. Li, C. H. Lee, D. Wingard, Y. K. Yap, X. Shi, and S. W. Goh. 2013. “Rheological properties and chemical bonding of asphalt modified with nanosilica.” J. Mater. Civ. Eng. 25 (11): 1619–1630. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000690.
Yarahmadi, A. M., G. Shafabakhsh, and A. Asakereh. 2022. “Laboratory investigation of the effect of nano Caco3 on rutting and fatigue of stone mastic asphalt mixtures.” Constr. Build. Mater. 317 (Jan): 126127. https://doi.org/10.1016/j.conbuildmat.2021.126127.
Yaya, A. S., D. Oldham, S. Hosseinnezhad, S. Aflaki, and E. H. Fini. 2016. “Physiochemical and rheological characterization of biomodified gilsonite.” In Proc., Transportation Research Board 95th Annual Meeting. Washington, DC: Transportation Research Record.
Yilmaz, M., and M. E. Çeloğlu. 2013. “Effects of SBS and different natural asphalts on the properties of bituminous binders and mixtures.” Constr. Build. Mater. 44 (Jul): 533–540. https://doi.org/10.1016/j.conbuildmat.2013.03.036.
Yilmaz, M., and Ö. Erdoğan Yamaç. 2017. “Evaluation of gilsonite and styrene-butadiene-styrene composite usage in bitumen modification on the mechanical properties of hot mix asphalts.” J. Mater. Civ. Eng. 29 (9): 04017089. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001938.
Yilmaz, M., B. V. Kök, and N. Kuloğlu. 2013. “Investigating the resistance of asphaltite containing hot mix asphalts against fatigue and permanent deformation by cyclic tests.” Can. J. Civ. Eng. 40 (1): 27–34. https://doi.org/10.1139/cjce-2011-0354.
Yilmaz, M., and E. Yalcin. 2016. “The effects of using different bitumen modifiers and hydrated lime together on the properties of hot mix asphalts.” Road Mater. Pavement Des. 17 (2): 499–511. https://doi.org/10.1080/14680629.2015.1091376.
Yusoff, N. I. M., A. A. S. Breem, H. N. Alattug, A. Hamim, and J. Ahmad. 2014. “The effects of moisture susceptibility and ageing conditions on nano-silica/polymer-modified asphalt mixtures.” Constr. Build. Mater. 72 (Dec): 139–147. https://doi.org/10.1016/j.conbuildmat.2014.09.014.
Zhang, J., L. F. Walubita, A. N. Faruk, P. Karki, and G. S. Simate. 2015. “Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance—A laboratory study.” Constr. Build. Mater. 94 (Sep): 218–227. https://doi.org/10.1016/j.conbuildmat.2015.06.044.
Zhang, R., H. Wang, J. Ji, and H. Wang. 2022. “Viscoelastic properties, rutting resistance, and fatigue resistance of waste wood-based biochar-modified asphalt.” Coatings 12 (1): 89. https://doi.org/10.3390/coatings12010089.
Zhou, L., W. Huang, Y. Zhang, Q. Lv, C. Yan, and Y. Jiao. 2020. “Evaluation of the adhesion and healing properties of modified asphalt binders.” Constr. Build. Mater. 251 (Aug): 119026. https://doi.org/10.1016/j.conbuildmat.2020.119026.
Ziari, H., and R. Babagoli. 2015. “Evaluation of fatigue and rutting behavior of asphalt binder containing warm additive.” Pet. Sci. Technol. 33 (17–18): 1627–1632. https://doi.org/10.1080/10916466.2015.1084320.
Ziari, H., R. Babagoli, and S. E. T. Razi. 2015. “The evaluation of rheofalt as a warm mix asphalt additive on the properties of asphalt binder.” Pet. Sci. Technol. 33 (21–22): 1781–1786. https://doi.org/10.1080/10916466.2015.1091841.
Ziari, H., A. Goli, and A. Amini. 2016. “Effect of crumb rubber modifier on the performance properties of rubberized binders.” J. Mater. Civ. Eng. 28 (12): 04016156. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001661.
Zuluaga-Astudillo, D. A., H. A. Rondón-Quintana, and C. A. Zafra-Mejía. 2021. “Mechanical performance of gilsonite modified asphalt mixture containing recycled concrete aggregate.” Appl. Sci. 11 (10): 4409. https://doi.org/10.3390/app11104409.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 4April 2023

History

Received: Dec 16, 2021
Accepted: Aug 3, 2022
Published online: Jan 30, 2023
Published in print: Apr 1, 2023
Discussion open until: Jun 30, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Rezvan Babagoli [email protected]
Assistant Professor, Faculty of Civil Engineering, Univ. of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran (corresponding author). Email: [email protected]
Alireza Ameli [email protected]
Assistant Professor, Dept. of Civil Engineering, Faculty of Engineering, Malard Branch, Islamic Azad Univ., Malard, P.O. Box 53174-31691, Tehran, Iran. Email: [email protected]
Saman Salari [email protected]
P.E.
Asphalt Research Engineer, Dept. of Transportation and Development, Louisiana Transportation Research Center, Baton Rouge, LA 70808. Email: [email protected]
Seyed Mohsen Hosseinian [email protected]
Ph.D. Candidate, Dept. of Civil–Transportation Planning, Faculty of Technical and Engineering, Imam Khomeini International Univ., P.O. Box 34148-96818, Qazvin, Iran. Email: [email protected]
Ahmad Ebrahimi Moghaddam [email protected]
Dept. of Civil Engineering, Faculty of Technical and Engineering, Mashhad Branch, Islamic Azad Univ., P.O. Box 91735-413, Mashhad, Iran. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share