Abstract

The present paper aims to assess the feasibility of using two wastes, sugar cane straw ash (SCSA) and red clay brick waste (RCBW), in the production of a new sustainable binder for alkali-activated materials (AAM). The RCBW/SCSA mass proportions assessed were 100/0, 87.5/12.5, 75/25, 62.5/37.5, and 50/50. The activating solution was composed of NaOH and sodium silicate with a Na+ concentration of 8.3  mol.kg1 and a SiO2/Na2O molar ratio of 1.3. Moreover, 5 wt.% of calcium hydroxide was added. Compressive strength, the volume of permeable pore space, water absorption of mortars, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy with energy-dispersive X-ray spectroscopy of pastes were carried out in this study. Tests were carried out at 3, 7, and 28 days of curing at 25°C and 1 and 3 days at 65°C. Results showed that the mortars produced with RCBW/SCSA mass proportion of 50/50 presented an increase of 50% in compressive strength compared to samples with only RCBW (100/0) after 28 days of curing at 25°C (39.2 and 26.2 MPa, respectively). Moreover, the presence of SCSA content increases pore refinement and reduces water absorption. Studies on pastes showed that the SCSA favored the formation of N-A-S-H gels with higher silicon content and denser microstructure than the sample with only RCBW. Therefore, it can be concluded that the SCSA can be employed with RCBW in AAM to improve its mechanical properties and generate a denser structure.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request: chemical composition, SEM, compressive strength, water absorption and volume of permeable pore space, X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy, thermogravimetric analysis, EDS.

Acknowledgments

The authors would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the scholarship (Process n°130733/2017-2) and for the research project (Process CNPq 402539/2016-8). Thanks are also extended to Scatolin (Ilha Solteira/SP) and Diatom Mineração Ltd. for the supplied materials. We thank Laboratório de Plasmas e Processos from Instituto Tecnológico de Aeronáutica, Brazil, for providing the analysis on the X-ray Diffractometer and Fourier Transform Infrared Spectrometers equipment. We thank Laboratório de Caracterização Físico-Química, from the Instituto de Aeronáutica e Espaço, Brazil, for providing the analysis on the thermogravimetric analysis equipment. We thank the Materials and Processes Department of the Mechanical Engineering Division of ITA for the SEM/EDS.

References

Aalil, I., D. Badreddine, K. Beck, X. Brunetaud, K. Cherkaoui, A. Chaaba, and M. Al-Mukhtar. 2019. “Valorization of crushed bricks in lime-based mortars.” Constr. Build. Mater. 226 (Jun): 555–563. https://doi.org/10.1016/j.conbuildmat.2019.07.265.
ABDI (Agência Brasileira de Desenvolvimento Industrial). 2016. “Estudo técnico setorial da cerâmica vermelha.” Accessed September 18, 2021. http://abdi.com.br/Estudo/05prova_páginaúnica-CerâmicaVermelha.pdf.
Aliabdo, A. A., A. E. M. Abd Elmoaty, and H. A. Salem. 2016. “Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance.” Constr. Build. Mater. 123 (5): 581–593. https://doi.org/10.1016/j.conbuildmat.2016.07.043.
Alventosa, K. M. L., B. Wild, and C. E. White. 2022. “The effects of calcium hydroxide and activator chemistry on alkali-activated metakaolin pastes exposed to high temperatures.” Cem. Concr. Res. 154 (Dec): 106742. https://doi.org/10.1016/j.cemconres.2022.106742.
Asociación Española de Normalización y Certificación. 2018. Métodos de ensayo de cementos. Parte 1: Determinación de resistencias mecánicas. UNE EN 196-1:2018. Madrid, Spain: Asociación Española de Normalización y Certificación.
Associação Brasileira para Reciclagem de Resíduos da Construção Civil e Demolição. 2015. “Pesquisa Setorial.” Accessed September 23, 2021. http://abrecon.org.br/pesquisa_setorial.
ASTM. 2013. Standard test method for density, absorption, and voids in hardened concrete. West Conshohocken, PA: ASTM.
Bernal, A. S., J. L. Provis, A. Fernández-Jimenez, V. P. Krivenko, E. Kavalerova, M. Palacios, and C. Shi. 2014. “Binder chemistry: High-calcium alkali-activated materials.” In Alkali activated materials. New York: Springer.
BNDES and CGEE (Banco Nacional de Desenvolvimento Econômico, and Social and Centro de Gestão e Estudos Estratégicos). 2008. Sugar cane-based bioethanol: Energy for sustainable development. 1st ed, 300. Rio de Janeiro, Brazil: Banco Nacional de Desenvolvimento Econômico e Social.
Calligaris, G. A., M. K. K. D. Franco, L. P. Aldrige, M. S. Rodrigues, A. L. Beraldo, F. Yokaichiya, X. Turrillas, and L. P. Cardoso. 2015. “Assessing the pozzolanic activity of cements with added sugar cane straw ash by synchrotron X-ray diffraction and Rietveld analysis.” Constr. Build. Mater. 98 (Aug): 44–50. https://doi.org/10.1016/j.conbuildmat.2015.08.103.
CONAB (Companhia Nacional de Abastecimento). 2018. “Acompanhamento Safra Brasileira de Cana-de-Açucar: Primeiro levantamento.” Accessed October 18, 2021. http://www.conab.gov.br.
de Aquino, G. S., C. de Conti Medina, D. C. da Costa, M. Shahab, and A. D. Santiago. 2017. “Sugarcane straw management and its impact on production and development of ratoons.” Ind. Crops Prod. 102 (Mar): 58–64. https://doi.org/10.1016/j.indcrop.2017.03.018.
Dombrowski, K., A. Buchwald, and M. Weil. 2007. “The influence of calcium content on the structure and thermal performance of fly ash based geopolymers.” J. Mater. Sci. 42 (9): 3033–3043. https://doi.org/10.1007/s10853-006-0532-7.
Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. van Deventer. 2007a. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
Duxson, P., J. L. Provis, G. C. Lukey, and J. S. J. van Deventer. 2007b. “The role of inorganic polymer technology in the development of ‘green concrete.’” Cem. Concr. Res. 37 (12): 1590–1597. https://doi.org/10.1016/j.cemconres.2007.08.018.
Frías, M., O. Rodríguez, M. I. Sanchez de Rojas, E. Villar-Cociña, M. S. Rodrigues, and H. Savastano Jr. 2017. “Advances on the development of ternary cements elaborated with biomass ashes coming from different activation process.” Constr. Build. Mater. 136 (5): 73–80. https://doi.org/10.1016/j.conbuildmat.2017.01.018.
Frías, M., E. Villar-Cociña, and E. Valencia-Morales. 2007. “Characterisation of sugar cane straw waste as pozzolanic material for construction: Calcining temperature and kinetic parameters.” Waste Manage. 27 (4): 533–538. https://doi.org/10.1016/j.wasman.2006.02.017.
García-Lodeiro, I., A. Palomo, and A. Fernández-Jiménez. 2014. “An overview of the chemistry of alkali-activated cement-based binders.” In Handbook of Alkali-activated cements, mortars and concretes, 19–47. Washington, DC: Woodhead Publishing.
Görhan, G., R. Aslaner, and O. Şinik. 2016. “The effect of curing on the properties of metakaolin and fly ash-based geopolymer paste.” Composites, Part B 97 (May): 329–335. https://doi.org/10.1016/j.compositesb.2016.05.019.
Habert, G., C. Billard, P. Rossi, C. Chen, and N. Roussel. 2010. “Cement production technology improvement compared to factor 4 objectives.” Cem. Concr. Res. 40 (5): 820–826. https://doi.org/10.1016/j.cemconres.2009.09.031.
He, Z., A. Shen, H. Wu, W. Wang, L. Wang, C. Yao, and J. Wu. 2021. “Research progress on recycled clay brick waste as an alternative to cement for sustainable construction materials.” Constr. Build. Mater. 274 (Dec): 122113. https://doi.org/10.1016/j.conbuildmat.2020.122113.
Hoppe Filho, J., A. Gobbi, E. Pereira, V. A. Quarcioni, and M. H. F. de Medeiros. 2017. “Atividade pozolânica de adições minerais para cimento Portland (Parte I): Índice de atividade pozolânica (IAP) com cal, difração de raios-X (DRX), termogravimetria (TG/DTG) e Chapelle modificado.” Matéria (Rio de Janeiro) 22 (3): 206–214. https://doi.org/10.1590/s1517-707620170003.0206.
Hoppe Filho, J., C. A. O. Pires, O. D. Leite, M. R. Garcez, and M. H. F. Medeiros. 2021. “Red ceramic waste as supplementary cementitious material: Microstructure and mechanical properties.” Constr. Build. Mater. 296 (5): 123653. https://doi.org/10.1016/j.conbuildmat.2021.123653.
IEA (International Energy Agency). 2018. Cement sustainability initiative–CSI. Technology roadmap—Low-carbon transition in the cement industry. Paris: IEA.
Keppert, M., E. Vejmelková, P. Bezdička, M. Doleželová, M. Čáchová, L. Scheinherrová, J. Pokorný, M. Vyšvařil, P. Rovnaníková, and R. Černý. 2018. “Red-clay ceramic powders as geopolymer precursors: Consideration of amorphous portion and CaO content.” Appl. Clay Sci. 161 (8): 82–89. https://doi.org/10.1016/j.clay.2018.04.019.
Li, L. G., Z. H. Lin, G. M. Chen, and A. K. H. Kwan. 2020. “Reutilizing clay brick dust as paste substitution to produce environment-friendly durable mortar.” J. Cleaner Prod. 274 (1): 122787. https://doi.org/10.1016/j.jclepro.2020.122787.
Martirena, F., B. Middendorf, R. L. Day, M. Gehrke, P. Roque, L. Martínez, and S. Betancourt. 2006. “Rudimentary, low tech incinerators as a means to produce reactive pozzolan out of sugar cane straw.” Cem. Concr. Res. 36 (6): 1056–1061. https://doi.org/10.1016/j.cemconres.2006.03.016.
McLellan, B. C., R. P. Williams, J. Lay, A. van Riessen, and G. D. Corder. 2011. “Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement.” J. Cleaner Prod. 19 (9–10): 1080–1090. https://doi.org/10.1016/j.jclepro.2011.02.010.
Mohammed, S. 2017. “Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review.” Constr. Build. Mater. 140 (Aug): 10–19. https://doi.org/10.1016/j.conbuildmat.2017.02.078.
Moraes, J. C. B., J. L. Akasaki, J. L. P. Melges, J. Monzó, M. V. Borrachero, L. Soriano, J. Payá, and M. M. Tashima. 2015. “Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended Portland cement: Microstructural characterization of pastes and mechanical strength of mortars.” Constr. Build. Mater. 94 (Sep): 670–677. https://doi.org/10.1016/j.conbuildmat.2015.07.108.
Moraes, J. C. B., A. Font, L. Soriano, J. L. Akasaki, M. M. Tashima, J. Monzó, M. V. Borrachero, and J. Payá. 2018. “New use of sugar cane straw ash in alkali-activated materials: A silica source for the preparation of the alkaline activator.” Constr. Build. Mater. 171 (Mar): 611–621. https://doi.org/10.1016/j.conbuildmat.2018.03.230.
Moraes, J. C. B., M. M. Tashima, J. L. Akasaki, J. L. P. Melges, J. Monzó, M. V. Borrachero, L. Soriano, and J. Payá. 2016. “Increasing the sustainability of alkali-activated binders: The use of sugar cane straw ash (SCSA).” Constr. Build. Mater. 124 (Jul): 148–154. https://doi.org/10.1016/j.conbuildmat.2016.07.090.
Moraes, J. C. B., M. M. Tashima, J. L. Akasaki, J. L. P. Melges, J. Monzó, M. V. Borrachero, L. Soriano, and J. Payá. 2017. “Effect of sugar cane straw ash (SCSA) as solid precursor and the alkaline activator composition on alkali-activated binders based on blast furnace slag (BFS).” Constr. Build. Mater. 144 (Aug): 214–224. https://doi.org/10.1016/j.conbuildmat.2017.03.166.
Oliveira, D. C. G., J. D. Salles, B. A. Moriy, J. A. Rossignolo, and J. R. Holmer Savastano. 2015. “Physical and mechanical performance of mortars with ashes from straw and bagasse sugarcane.” World Acad. Eng. 9 (1). https://doi.org/10.5281/zenodo.1099569.
Pacheco-Torgal, F. 2014. “Introduction to handbook of alkali-activated cements, mortars and concretes.” In Handbook of alkali-activated cements, mortars and concretes. Washington, DC: Woodhead Publishing.
Pacheco-Torgal, F., and S. Jalali. 2010. “Reusing ceramic wastes in concrete.” Constr. Build. Mater. 24 (5): 832–838. https://doi.org/10.1016/j.conbuildmat.2009.10.023.
Payá, J., J. Monzó, M. V. Borrachero, and M. M. Tashima. 2014. “Reuse of aluminosilicate industrial waste materials in the production of alkali-activated concrete binders.” In Handbook of alkali-activated cements, mortars and concretes. Washington, DC: Woodhead Publishing.
Peyne, J., J. Gautron, J. Doudeau, E. Joussein, and S. Rossignol. 2017. “Influence of calcium addition on calcined brick clay based geopolymers: A thermal and FTIR spectroscopy study.” Constr. Build. Mater. 152 (Jun): 794–803. https://doi.org/10.1016/j.conbuildmat.2017.07.047.
Provis, J. L. 2018. “Alkali-activated materials.” Cem. Concr. Res. 114 (14): 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009.
Provis, J. L., A. Fernández-Jimenez, E. Kamseu, C. Leonelli, and A. Palomo. 2014. “Binder chemistry—Low-calcium alkali-activated materials.” In Alkali-activated materials: State-of-the-art report, 135–179. Berlin: Springer.
Reig, L., L. Soriano, M. V. Borrachero, J. Monzó, and J. Payá. 2014. “Influence of the activator concentration and calcium hydroxide addition on the properties of alkali-activated porcelain stoneware.” Constr. Build. Mater. 63 (Jul): 214–222. https://doi.org/10.1016/j.conbuildmat.2014.04.023.
Reig, L., L. Soriano, M. V. Borrachero, J. Monzó, and J. Payá. 2016. “Influence of calcium aluminate cement (CAC) on alkaline activation of red clay brick waste (RCBW).” Cem. Concr. Compos. 65 (10): 177–185. https://doi.org/10.1016/j.cemconcomp.2015.10.021.
Reig, L., M. M. Tashima, M. V. Borrachero, J. Monzó, C. R. Cheeseman, and J. Payá. 2013a. “Properties and microstructure of alkali-activated red clay brick waste.” Constr. Build. Mater. 43 (Jan): 98–106. https://doi.org/10.1016/j.conbuildmat.2013.01.031.
Reig, L., M. M. Tashima, L. Soriano, M. V. Borrachero, J. Monzó, and J. Payá. 2013b. “Alkaline activation of ceramic waste materials.” Waste Biomass Valorization 4 (4): 729–736. https://doi.org/10.1007/s12649-013-9197-z.
Robayo, R. A., A. Mulford, J. Munera, and R. Mejía de Gutiérrez. 2016. “Alternative cements based on alkali-activated red clay brick waste.” Constr. Build. Mater. 128 (Oct): 163–169. https://doi.org/10.1016/j.conbuildmat.2016.10.023.
Robayo-Salazar, R. A., J. M. Mejía-Arcila, and R. Mejía de Gutiérrez. 2017. “Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials.” J. Cleaner Prod. 166 (7): 242–252. https://doi.org/10.1016/j.jclepro.2017.07.243.
Schackow, A., D. Stringari, L. Senff, S. L. Correia, and A. M. Segadães. 2015. “Influence of fired clay brick waste additions on the durability of mortars.” Cem. Concr. Compos. 62 (Apr): 82–89. https://doi.org/10.1016/j.cemconcomp.2015.04.019.
Scremin, L. B. 2007. Desenvolvimento de um sistema de apoio ao gerenciamento de resíduos de construção e demolição para municípios de pequeno porte. Florianópolis, Brazil: Universidade Federal de Santa Catarina.
Sedira, N., J. Castro-Gomes, and M. Magrinho. 2018. “Red clay brick and tungsten mining waste-based alkali-activated binder: Microstructural and mechanical properties.” Constr. Build. Mater. 190 (Sep): 1034–1048. https://doi.org/10.1016/j.conbuildmat.2018.09.153.
Shao, J., J. Gao, Y. Zhao, and X. Chen. 2019. “Study on the pozzolanic reaction of clay brick powder in blended cement pastes.” Constr. Build. Mater. 213 (Mar): 209–215. https://doi.org/10.1016/j.conbuildmat.2019.03.307.
Sun, Z., H. Cui, H. An, D. Tao, Y. Xu, J. Zhai, and Q. Li. 2013. “Synthesis and thermal behavior of geopolymer-type material from waste ceramic.” Constr. Build. Mater. 49 (Aug): 281–287. https://doi.org/10.1016/j.conbuildmat.2013.08.063.
Tuyan, M., Ö. Andiç-Çakir, and K. Ramyar. 2018. “Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer.” Composites, Part B 135 (Feb): 242–252. https://doi.org/10.1016/j.compositesb.2017.10.013.
UNICA (União da Indústria de Cana-de-açúcar). 2014. “Produção de cana-de-açúcar, 2007/2008-2017/2018.” Accessed October 20, 2021. http://www.unicadata.com.br.
van Deventer, J. S. J., J. L. Provis, and P. Duxson. 2012. “Technical and commercial progress in the adoption of geopolymer cement.” Miner. Eng. 29 (Jun): 89–104. https://doi.org/10.1016/j.mineng.2011.09.009.
Villar-Cociña, E., E. Valencia-Morales, R. González-Rodríguez, and J. Hernández-Ruíz. 2003. “Kinetics of the pozzolanic reaction between lime and sugar cane straw ash by electrical conductivity measurement: A kinetic–diffusive model.” Cem. Concr. Res. 33 (4): 517–524. https://doi.org/10.1016/S0008-8846(02)00998-5.
Zawrah, M. F., R. A. Gado, N. Feltin, S. Ducourtieux, and L. Devoille. 2016. “Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production.” Process Saf. Environ. Protect. 103 (Jan): 237–251. https://doi.org/10.1016/j.psep.2016.08.001.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 4April 2023

History

Received: Mar 7, 2022
Accepted: Aug 3, 2022
Published online: Jan 30, 2023
Published in print: Apr 1, 2023
Discussion open until: Jun 30, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

João Pedro Bittencourt Batista [email protected]
P.G.
Ph.D. Student, Grupo de Pesquisa MAC–Materiais Alternativos de Construção, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Campus de Ilha Solteira, Alameda Bahia, 550, Ilha Solteira, São Paulo 15385-000, Brazil. Email: [email protected]
Ph.D. Student, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, R. Duque de Caxias, 225, Pirassununga, São Paulo 13635-900, Brazil. ORCID: https://orcid.org/0000-0002-7554-1755. Email: [email protected]
Mauro Mitsuuchi Tashima, Ph.D. [email protected]
Professor, Grupo de Pesquisa MAC–Materiais Alternativos de Construção, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Campus de Ilha Solteira, Alameda Bahia, 550, Ilha Solteira, São Paulo 15385-000, Brazil. Email: [email protected]
Jorge Luís Akasaki, Ph.D. [email protected]
Professor, Grupo de Pesquisa MAC–Materiais Alternativos de Construção, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Campus de Ilha Solteira, Alameda Bahia, 550, Ilha Solteira, São Paulo 15385-000, Brazil. Email: [email protected]
Jordi Payá, Ph.D. [email protected]
Professor, GIQUIMA Group–Grupo de Investigación en Química de los Materiales de Construcción, Instituto de Ciencia y Tecnología del Hormigón, Universitat Politècnica de València, Camino de Vera, s/n, 4N, València 46022, Spain. Email: [email protected]
João Claudio Bassan de Moraes, Ph.D. https://orcid.org/0000-0001-5432-608X
Professor, Civil Engineering Division, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, 50, São José dos Campos, São Paulo 12228-900, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-5432-608X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share