Abstract

Mineral admixtures in portland cement–based concrete, such as rice husk ash (RHA), improve the mechanical strength and durability under normal conditions and ambient temperature. However, more knowledge is needed on the behavior of concretes with these materials when subjected to fire conditions. Fire conditions are characterized by an expressive increase in temperature in the structure in a short period. Thus, this study aimed to evaluate the effect of partial portland cement replacement with RHA in concretes subjected to different temperatures. Parameters examined were mineral composition with X-ray diffraction (XRD), compressive mechanical strength, static modulus of elasticity, and mass loss after heating. The mineral composition of concretes with and without RHA replacement after heating was similar. Partial replacement of cement with RHA improved the mechanical performance with higher compressive strength up to a temperature of 400°C. The static modulus of elasticity degraded more sharply than mechanical strength due to dehydration of cementitious matrix and fissuring. No explosive spalling was observed for all temperatures tested, and the mass loss was similar for both concretes. This indicated no adverse effects in the partial replacement of portland cement with RHA from a mineral point of view.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Abdi Moghadam, M., and R. A. Izadifard. 2020. “Effects of zeolite and silica fume substitution on the microstructure and mechanical properties of mortar at high temperatures.” Constr. Build. Mater. 253 (Aug): 119206. https://doi.org/10.1016/j.conbuildmat.2020.119206.
ABNT (Associação Brasileira De Normas Técnicas). 1998. Concreto—Determinação da consistência pelo abatimento do tronco de cone. NBR NM 67. São Paulo, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2014. Materiais pozolânicos—Determinação do índice de desempenho com cimento Portland aos 28 dias. NBR 5772. São Paulo, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2015. Moldagem e cura de corpos-de-prova cilíndricos ou prismáticos de concreto. NBR 5738. São Paulo, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2017. Concreto—Determinação dos módulos estáticos de elasticidade e de deformação à compressão. NBR 8522. São Paulo, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2018. Concreto—Ensaio de compressão de corpos de prova cilíndricos. NBR 5739. São Paulo, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2019. Aditivos químicos para concreto de cimento Portland—Parte 1: Requisitos. NBR 11768. São Paulo, Brazil: ABNT.
Alarcon-Ruiz, L., G. Platret, E. Massieu, and A. Ehrlacher. 2005. “The use of thermal analysis in assessing the effect of temperature on a cement paste.” Cem. Concr. Res. 35 (3): 609–613. https://doi.org/10.1016/j.cemconres.2004.06.015.
Alqassim, M. A., M. R. Jones, L. E. A. Berlouis, and N. Nic Daeid. 2016. “A thermoanalytical, X-ray diffraction and petrographic approach to the forensic assessment of fire affected concrete in the United Arab Emirates.” Forensic Sci. Int. 264 (Jul): 82–88. https://doi.org/10.1016/j.forsciint.2016.03.015.
Andrew, R. M. 2019. “Global CO2 emissions from cement production, 1928–2018.” Earth Syst. Sci. Data 11 (May): 1675–1710. https://doi.org/10.5281/zenodo.831454.
Annerel, E., and L. Taerwe. 2009. “Revealing the temperature history in concrete after fire exposure by microscopic analysis.” Cem. Concr. Res. 39 (12): 1239–1249. https://doi.org/10.1016/j.cemconres.2009.08.017.
Bakhtiyari, S., A. Allahverdi, M. Rais-Ghasemi, B. A. Zarrabi, and T. Parhizkar. 2011. “Self-compacting concrete containing different powders at elevated temperatures—Mechanical properties and changes in the phase composition of the paste.” Thermochim. Acta 514 (1–2): 74–81. https://doi.org/10.1016/j.tca.2010.12.007.
Bie, R.-S., X.-F. Song, Q.-Q. Liu, X.-Y. Ji, and P. Chen. 2015. “Studies on effects of burning conditions and rice husk ash (RHA) blending amount on the mechanical behavior of cement.” Cem. Concr. Compos. 55 (Jan): 162–168. https://doi.org/10.1016/j.cemconcomp.2014.09.008.
Caetano, H., G. Ferreira, J. P. C. Rodrigues, and P. Pimienta. 2019. “Effect of the high temperatures on the microstructure and compressive strength of high strength fibre concretes.” Constr. Build. Mater. 199 (Feb): 717–736. https://doi.org/10.1016/j.conbuildmat.2018.12.074.
Choe, G., G. Kim, M. Yoon, E. Hwang, J. Nam, and N. Guncunski. 2019. “Effect of moisture migration and water vapor pressure build-up with the heating rate on concrete spalling type.” Cem. Concr. Res. 116 (Feb): 1–10. https://doi.org/10.1016/j.cemconres.2018.10.021.
Cifuentes, H., C. Leiva, F. Medina, and C. Fernández-Pereira. 2012. “Effects of fibres and rice husk ash on properties of heated HSC.” Mag. Concr. Res. 64 (5): 457–470. https://doi.org/10.1680/macr.11.00087.
Fedération Internacionale du Béton. 2007. Fire design of concrete structures—Materials, structures and modelling. State-of-art report, 106. Bern, Switzerland: Féderation Internationale du Béton. https://doi.org/doi.org/10.35789/fib.BULL.0038.
Gao, D., L. Yang, and Y. Li. 2018. “In situ monitoring the deterioration processes of hardened cement pastes and mortars exposed to continuous heating.” Constr. Build. Mater. 192 (Dec): 515–525. https://doi.org/10.1016/j.conbuildmat.2018.10.149.
Gastaldini, A. L. G., M. P. da Silva, F. B. Zamberlan, and C. Z. Mostardeiro Neto. 2014. “Total shrinkage, chloride penetration, and compressive strength of concretes that contain clear-colored rice husk ash.” Constr. Build. Mater. 54 (Mar): 369–377. https://doi.org/10.1016/j.conbuildmat.2013.12.044.
Georgali, B., and P. E. Tsakiridis. 2005. “Microstructure of fire-damaged concrete. A case study.” Cem. Concr. Compos. 27 (2): 255–259. https://doi.org/10.1016/j.cemconcomp.2004.02.022.
Gil, A. M., B. Fernandes, F. L. Bolina, and B. F. Tutikian. 2018. “Experimental analysis of the spalling phenomenon in precast reinforced concrete columns exposed to high temperatures.” Rev. IBRACON Estrut. E Mater. 11 (4): 856–875. https://doi.org/10.1590/s1983-41952018000400011.
Hager, I. 2013. “Behaviour of cement concrete at high temperature.” Bull. Pol. Acad. Sci. Tech. Sci. 61 (1): 145–154. https://doi.org/10.2478/bpasts-2013-0013.
Isaia, G. C., A. L. G. Gastaldini, L. Meira, M. Duart, and R. Zerbino. 2010. “Viabilidade do emprego de cinza de casca de arroz natural em concreto estrutural. Parte I: Propriedades mecânicas e microestrutura.” Ambient. constr. 10 (1): 121–137. https://doi.org/10.1590/S1678-86212010000100007.
Khaliq, W., and A. Mujeeb. 2019. “Effect of processed pozzolans on residual mechanical properties and macrostructure of high-strength concrete at elevated temperatures.” Struct. Concr. 20 (1): 307–317. https://doi.org/10.1002/suco.201800074.
Laanaiya, M., A. Bouibes, and A. Zaoui. 2021. “Structural stability of belite sulfoaluminate clinkering polymorphs.” Solid State Ionics 365 (Jul): 115641. https://doi.org/10.1016/j.ssi.2021.115641.
Li, L., L. Shi, Q. Wang, Y. Liu, J. Dong, H. Zhang, and G. Zhang. 2020. “A review on the recovery of fire-damaged concrete with post-fire-curing.” Constr. Build. Mater. 237 (Mar): 117564. https://doi.org/10.1016/j.conbuildmat.2019.117564.
Lim, S., and P. Mondal. 2014. “Micro- and nano-scale characterization to study the thermal degradation of cement-based materials.” Mater. Charact. 92 (Jun): 15–25. https://doi.org/10.1016/j.matchar.2014.02.010.
Nadeem, A., S. A. Memon, and T. Y. Lo. 2014. “The performance of fly ash and metakaolin concrete at elevated temperatures.” Constr. Build. Mater. 62 (Jul): 67–76. https://doi.org/10.1016/j.conbuildmat.2014.02.073.
Odelson, J. B., E. A. Kerr, and W. Vichit-Vadakan. 2007. “Young’s modulus of cement paste at elevated temperatures.” Cem. Concr. Res. 37 (2): 258–263. https://doi.org/10.1016/j.cemconres.2006.11.006.
Peng, G.-F., and Z.-S. Huang. 2008. “Change in microstructure of hardened cement paste subjected to elevated temperatures.” Constr. Build. Mater. 22 (4): 593–599. https://doi.org/10.1016/j.conbuildmat.2006.11.002.
Phan, L. T., J. R. Lawson, and F. L. Davis. 2001. “Effects of elevated temperature exposure on heating characteristics, spalling, and residual properties of high performance concrete.” Mater. Struct. 34 (2): 83–91. https://doi.org/10.1007/BF02481556.
Rêgo, J. H. S., A. A. Nepomuceno, E. P. Figueiredo, and N. P. Hasparyk. 2015. “Microstructure of cement pastes with residual rice husk ash of low amorphous silica content.” Constr. Build. Mater. 80 (Apr): 56–68. https://doi.org/10.1016/j.conbuildmat.2014.12.059.
RILEM Technical Committee. 2004. “Modulus of elasticity for service and accident conditions.” Mater. Struct. 37 (2): 139–144. https://doi.org/10.1007/BF02486610.
Rodríguez de Sensale, G., and I. Rodríguez Viacava. 2018. “A study on blended portland cements containing residual rice husk ash and limestone filler.” Constr. Build. Mater. 166 (Mar): 873–888. https://doi.org/10.1016/j.conbuildmat.2018.01.113.
Salas, D. A., A. D. Ramirez, C. R. Rodríguez, D. M. Petroche, A. J. Boero, and J. Duque-Rivera. 2016. “Environmental impacts, life cycle assessment and potential improvement measures for cement production: A literature review.” J. Cleaner Prod. 113 (Feb): 114–122. https://doi.org/10.1016/j.jclepro.2015.11.078.
Sensale, G. 2006. “Strength development of concrete with rice-husk ash.” Cem. Concr. Compos. 28 (2): 158–160. https://doi.org/10.1016/j.cemconcomp.2005.09.005.
Sensale, G. 2010. “Effect of rice-husk ash on durability of cementitious materials.” Cem. Concr. Compos. 32 (9): 718–725. https://doi.org/10.1016/j.cemconcomp.2010.07.008.
Silva, S. S. 2019. “Avaliação de propriedades físico-mecânicas de concretos com fíler calcário, em altos teores, cinza de casca de arroz e ativadores.” Dissertação, Dept. of Structures and Civil Construction, Universidade Federal de Santa Maria.
Umasabor, R. I., and J. O. Okovido. 2018. “Fire resistance evaluation of rice husk ash concrete.” Heliyon 4 (12): e01035. https://doi.org/10.1016/j.heliyon.2018.e01035.
Wang, W., Y. Meng, and D. Wang. 2017. “Effect of rice husk ash on high-temperature mechanical properties and microstructure of concrete.” Kemija u Industriji 66 (3–4): 157–164. https://doi.org/10.15255/KUI.2016.054.
Xie, Q., L. Zhang, S. Yin, B. Zhang, and Y. Wu. 2019. “Effects of high temperatures on the physical and mechanical properties of carbonated ordinary concrete.” Adv. Mater. Sci. Eng. 2019 (Feb): 1–10. https://doi.org/10.1155/2019/5753232.
Zhao, J., J.-J. Zheng, and G.-F. Peng. 2014. “A numerical method for predicting Young’s modulus of heated cement paste.” Constr. Build. Mater. 54 (Mar): 197–201. https://doi.org/10.1016/j.conbuildmat.2013.12.070.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 4April 2023

History

Received: Mar 22, 2022
Accepted: Jul 6, 2022
Published online: Jan 18, 2023
Published in print: Apr 1, 2023
Discussion open until: Jun 18, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Henrique dos Santos Kramer [email protected]
CEng.
Master’s Student, Dept. of Structures and Civil Construction, Federal Univ. of Santa Maria, Avenida Roraima, no 1000, Centro de Tecnologia, Universidade Federal de Santa Maria, Camobi, Santa Maria, Rio Grande do Sul, CEP 97105-900, Brasil (corresponding author). Email: [email protected]
Master’s Student, Dept. of Structures and Civil Construction, Federal Univ. of Santa Maria, Avenida Roraima, no 1000, Centro de Tecnologia, Universidade Federal de Santa Maria, Camobi, Santa Maria, Rio Grande do Sul, CEP 97105-900, Brasil. ORCID: https://orcid.org/0000-0002-1634-5383. Email: [email protected]
Alexandre Silva de Vargas, Ph.D. [email protected]
Professor, Dept. of Structures and Civil Construction, Federal Univ. of Santa Maria, Avenida Roraima, no 1000, Centro de Tecnologia, Universidade Federal de Santa Maria, Camobi, Santa Maria, Rio Grande do Sul, CEP 97105-900, Brasil. Email: [email protected]
Larissa Degliuomini Kirchhof, Ph.D. [email protected]
Professor, Dept. of Structures and Civil Construction, Federal Univ. of Santa Maria, Avenida Roraima, no 1000, Centro de Tecnologia, Universidade Federal de Santa Maria, Camobi, Santa Maria, Rio Grande do Sul, CEP 97105-900, Brasil. Email: [email protected]
Professor, Research and Inovation Directory, Federal Institute of Alagoas, Rua Mizael Domingues, no 530, Centro, Maceió, Alagoas, CEP 57020-600, Brasil. ORCID: https://orcid.org/0000-0002-0455-0339. Email: [email protected]
Rogério Cattelan Antocheves de Lima, Ph.D. https://orcid.org/0000-0001-6622-2210 [email protected]
Professor, Dept. of Structures and Civil Construction, Federal Univ. of Santa Maria, Avenida Roraima, no 1000, Centro de Tecnologia, Universidade Federal de Santa Maria, Camobi, Santa Maria, Rio Grande do Sul, CEP 97105-900, Brasil. ORCID: https://orcid.org/0000-0001-6622-2210. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share