Abstract

To generate sustainable mortars, this study investigated the impacts of adding two wastes into portland cement mortar: polyurethane powder waste (PU), and foundry exhaust sand (FES). The tests were carried out utilizing a response surface methodology (RSM) configuration with four different manufacturing variables: sand to cement ratio, coarse sand content (CS), FES, and PU replacing natural sand (NS). Compressive strength, modulus of elasticity, void index, and water absorption (Wa) all had substantial fitting values in the data. Furthermore, the experimental findings show that the adopted model is capable of accurately predicting the outcomes, and an optimized mortar combination was discovered and is presented.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors acknowledge the financial support from the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) (APQ-00385-18).

References

Abu Yaman, M., M. Abd Elaty, and M. Taman. 2017. “Predicting the ingredients of self compacting concrete using artificial neural network.” Alexandria Eng. J. 56 (4): 523–532. https://doi.org/10.1016/j.aej.2017.04.007.
Al-Mulla, I. F. A., A. S. Al-Rihimy, and M. F. Al-Shamaa. 2020. “Compressive strength and shrinkage behavior of concrete produced from Portland limestone cement with water absorption polymer balls.” Key Eng. Mater. 857 (Aug): 83–88. https://doi.org/10.4028/www.scientific.net/KEM.857.83.
Al-Quraishi, O. A. 2021. “Choosing the best eestimated regression equation for data subject to geometric distribution (Student data as a case study).” J. Phys. Conf. Ser. 1879 (3): 032045. https://doi.org/10.1088/1742-6596/1879/3/032045.
Anike, E. E., M. Saidani, E. Ganjian, M. Tyrer, and A. O. Olubanwo. 2020. “Evaluation of conventional and equivalent mortar volume mix design methods for recycled aggregate concrete.” Mater. Struct. 53 (1): 22. https://doi.org/10.1617/s11527-020-1457-3.
ASTM. 2015. Standard test method for fundamental transverse, longitudinal, and torsional frequencies of concrete specimens. ASTM C215-08. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard specification for chemical admixtures for concrete. ASTM C494/C494M-19. West Conshohocken, PA: ASTM.
Avellaneda-Rivera, L. M., F. J. Sáez-Martínez, and Á. González-Moreno. 2020. “Open and eco-innovations in traditional industries.” In Innovation strategies in environmental science, 145–178. Amsterdam, Netherlands: Elsevier.
Barnat-Hunek, D., S. Duda, M. Garbacz, and G. Łagód. 2018. “Hydrophobisation of mortars containing waste polyurethane foam.” In Vol. 163 of Proc., T.MATEC Web of Conf., edited by I. Hager and T. Tracz, 04006. Les Ulis, France: EDP Science.
Berrang-Ford, L., et al. 2021. “A systematic global stocktake of evidence on human adaptation to climate change.” Nat. Clim. Change 11 (11): 989–1000. https://doi.org/10.1038/s41558-021-01170-y.
Brazilian National Standards Organization. 2003a. Aggregates—Sieve analysis of fine and coarse aggregates. São Paulo, Brazil: Brazilian National Standards Organization.
Brazilian National Standards Organization. 2003b. Hydrated lime for mortars—Requirements. São Paulo, Brazil: Brazilian National Standards Organization.
Brazilian National Standards Organization. 2005. Mortars applied on walls and ceilings—Requirements. São Paulo, Brazil: Brazilian National Standards Organization.
Brazilian National Standards Organization. 2008. Portland cement—Requirements. São Paulo, Brazil: Brazilian National Standards Organization.
Brazilian National Standards Organization. 2009. Hardened mortar and concrete—Determination of absorption, voids and specific gravity. São Paulo, Brazil: Brazilian National Standards Organization.
Brazilian National Standards Organization. 2016. Mortars applied on walls and ceilings—Determination of the consistence index. São Paulo, Brazil: Brazilian National Standards Organization.
Brazilian National Standards Organization. 2018. Concrete—Compression test of cylindrical specimens. São Paulo, Brazil: Brazilian National Standards Organization.
Brazilian National Standards Organization. 2021. Hardened concrete—Determination of elasticity and deformation modulus part 2: Dynamic modulus of elasticity by the method of natural frequencies of vibration. São Paulo, Brazil: Brazilian National Standards Organization.
Briones-Llorente, R., R. Barbosa, M. Almeida, E. A. Montero García, and Á. Rodríguez Saiz. 2020. “Ecological design of new efficient energy-performance construction materials with rigid polyurethane foam waste.” Polymers 12 (5): 1048. https://doi.org/10.3390/polym12051048.
Chong, B. W., et al. 2021. “Design of experiment on concrete mechanical properties prediction: A critical review.” Materials 14 (8): 1866. https://doi.org/10.3390/ma14081866.
ecycle. 2020. “UN Environment points out gaps in global plastic recycling.” [In Portuguese.] Accessed December 16, 2021. https://www.ecycle.com.br/onu-meio-ambiente-aponta-lacunas-na-reciclagem-global-de-plastico/.
Fatemi, S., M. K. Varkani, Z. Ranjbar, and S. Bastani. 2006. “Optimization of the water-based road-marking paint by experimental design, mixture method.” Prog. Org. Coat. 55 (4): 337–344. https://doi.org/10.1016/j.porgcoat.2006.01.006.
Ferdosian, I., and A. Camões. 2017. “Eco-efficient ultra-high performance concrete development by means of response surface methodology.” Cem. Concr. Compos. 84 (Nov): 146–156. https://doi.org/10.1016/j.cemconcomp.2017.08.019.
Gao, H., and Q. Sun. 2020. “Study on fatigue test and life prediction of polyurethane cement composite (PUC) under high or low temperature conditions.” Adv. Mater. Sci. Eng. 2020 (Apr): 1–14. https://doi.org/10.1155/2020/2398064.
Gholampour, A., A. H. Gandomi, and T. Ozbakkaloglu. 2017. “New formulations for mechanical properties of recycled aggregate concrete using gene expression programming.” Constr. Build. Mater. 130 (Jan): 122–145. https://doi.org/10.1016/j.conbuildmat.2016.10.114.
Gunst, R. F., R. H. Myers, and D. C. Montgomery. 1996. “Response surface methodology: Process and product optimization using designed experiments.” Technometrics 38 (3): 285. https://doi.org/10.2307/1270613.
Habibi, A., A. M. Ramezanianpour, M. Mahdikhani, and O. Bamshad. 2021. “RSM-based evaluation of mechanical and durability properties of recycled aggregate concrete containing GGBFS and silica fume.” Constr. Build. Mater. 270 (Feb): 121431. https://doi.org/10.1016/j.conbuildmat.2020.121431.
Industrias Fox. 2020. “Indústria e Comércio Fox de Reciclagem Economia Circular Ltda.” Accessed December 21, 2021. https://www.industriafox.com.br/.
ISO. 2020. Particle size analysis—Laser diffraction methods—Part 1. ISO 13320. Geneva: ISO.
Kenett, R. S. 1991. “Two methods for comparing pareto charts.” J. Qual. Technol. 23 (1): 27–31. https://doi.org/10.1080/00224065.1991.11979280.
Khotbehsara, M. M., B. M. Miyandehi, F. Naseri, T. Ozbakkaloglu, F. Jafari, and E. Mohseni. 2018. “Effect of SnO2, ZrO2, and CaCO3 nanoparticles on water transport and durability properties of self-compacting mortar containing fly ash: Experimental observations and ANFIS predictions.” Constr. Build. Mater. 158 (Jan): 823–834. https://doi.org/10.1016/j.conbuildmat.2017.10.067.
Li, Q., L. Cai, Y. Fu, H. Wang, and Y. Zou. 2015. “Fracture properties and response surface methodology model of alkali-slag concrete under freeze–thaw cycles.” Constr. Build. Mater. 93 (Sep): 620–626. https://doi.org/10.1016/j.conbuildmat.2015.06.037.
Martins, M. A., et al. 2021. “Physical and chemical properties of waste foundry exhaust sand for use in self-compacting concrete.” Materials 14 (19): 5629. https://doi.org/10.3390/ma14195629.
Martins, M. A., R. M. Barros, L. R. R. da Silva, V. C. dos Santos, R. C. C. Lintz, L. A. Gachet, M. L. Melo, and C. B. Martinez. 2022. “Durability indicators of high-strength self-compacting concrete with marble and granite wastes and waste foundry exhaust sand using electrochemical tests.” Constr. Build. Mater. 317 (Jan): 125907. https://doi.org/10.1016/j.conbuildmat.2021.125907.
Mashhadban, H., S. S. S. S. Kutanaei, and M. A. M. A. Sayarinejad. 2016. “Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network.” Constr. Build. Mater. 119 (Aug): 277–287. https://doi.org/10.1016/j.conbuildmat.2016.05.034.
Miller, S. A., and R. J. Myers. 2021. “Correction to ‘environmental impacts of alternative cement binders’.” Environ. Sci. Technol. 55 (9): 6525. https://doi.org/10.1021/acs.est.1c02128.
Montgomery, D. C. 2017. Design and analysis of experiments. Hoboken, NJ: Wiley.
Myers, R. H., D. C. Montgomery, G. G. Vining, C. M. Borror, and S. M. Kowalski. 2004. “Response surface methodology: A retrospective and literature survey.” J. Qual. Technol. 36 (1): 53–77. https://doi.org/10.1080/00224065.2004.11980252.
Naga Rajesh, K., M. K. Rath, and P. Markandeya Raju. 2019. “A research on sustainable micro-concrete.” Int. J. Recent Technol. Eng. 8 (2): 1137–1139. https://doi.org/10.35940/ijrte.B1210.0782S319.
Naik, T. R., V. M. Patel, D. M. Parikh, and M. P. Tharaniyil. 1994. “Utilization of used foundry sand in concrete.” J. Mater. Civ. Eng. 6 (2): 254–263. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:2(254).
Neville, A. M., and J. J. Brooks. 2010. Concrete technology. 2nd ed. London: Pearson Education.
Parashar, A., P. Aggarwal, B. Saini, Y. Aggarwal, and S. Bishnoi. 2020. “Study on performance enhancement of self-compacting concrete incorporating waste foundry sand.” Constr. Build. Mater. 251 (Aug): 118875. https://doi.org/10.1016/j.conbuildmat.2020.118875.
Rakić, T., I. Kasagić-Vujanović, M. Jovanović, B. Jančić-Stojanović, and D. Ivanović. 2014. “Comparison of full factorial design, central composite design, and Box-Behnken design in chromatographic method development for the determination of fluconazole and its impurities.” Anal. Lett. 47 (8): 1334–1347. https://doi.org/10.1080/00032719.2013.867503.
Romagnoli, M., C. Leonelli, E. Kamse, and M. Lassinantti Gualtieri. 2012. “Rheology of geopolymer by DOE approach.” Constr. Build. Mater. 36 (Nov): 251–258. https://doi.org/10.1016/j.conbuildmat.2012.04.122.
Ryan, T. P., and J. P. Morgan. 2007. “Modern experimental design.” J. Stat. Theory Pract. 1 (3–4): 501–506. https://doi.org/10.1080/15598608.2007.10411855.
Sagnella, G. A. 1985. “Model fitting, parameter estimation, linear and non-linear regression.” Trends Biochem. Sci 10 (3): 100–103. https://doi.org/10.1016/0968-0004(85)90261-0.
Santamaría Vicario, I., L. Alameda Cuenca-Romero, S. Gutiérrez González, V. Calderón Carpintero, and Á. Rodríguez Saiz. 2020. “Design and characterization of gypsum mortars dosed with polyurethane foam waste PFW.” Materials 13 (7): 1497. https://doi.org/10.3390/ma13071497.
Siddique, R. 2009. “Utilization of waste materials and by-products in producing controlled low-strength materials.” Resour. Conserv. Recycl. 54 (1): 1–8. https://doi.org/10.1016/j.resconrec.2009.06.001.
Siddique, R., G. Kaur, and A. Rajor. 2010. “Waste foundry sand and its leachate characteristics.” Resour. Conserv. Recycl. 54 (12): 1027–1036. https://doi.org/10.1016/j.resconrec.2010.04.006.
Silva, L. R. R., J. A. da Silva, M. B. Francisco, V. A. Ribeiro, M. H. B. de Souza, P. Capellato, M. A. Souza, V. Claret dos Santos, P. Cesar Gonçalves, and M. de Lourdes Noronha Motta Melo. 2020. “Polymeric waste from recycling refrigerators as an aggregate for self-compacting concrete.” Sustainability 12 (20): 8731. https://doi.org/10.3390/su12208731.
Singh, G., and R. Siddique. 2012a. “Abrasion resistance and strength properties of concrete containing waste foundry sand (WFS).” Constr. Build. Mater. 28 (1): 421–426. https://doi.org/10.1016/j.conbuildmat.2011.08.087.
Singh, G., and R. Siddique. 2012b. “Effect of waste foundry sand (WFS) as partial replacement of sand on the strength, ultrasonic pulse velocity and permeability of concrete.” Constr. Build. Mater. 26 (1): 416–422. https://doi.org/10.1016/j.conbuildmat.2011.06.041.
Souza, C. S., M. L. P. Antunes, L. V. O. Dalla Valentina, E. C. Rangel, and N. Cristino da Cruz. 2019. “Use of waste foundry sand (WFS) to produce protective coatings on aluminum alloy by plasma electrolytic oxidation.” J. Cleaner Prod. 222 (Jun): 584–592. https://doi.org/10.1016/j.jclepro.2019.03.013.
Torres, A., L. Bartlett, and C. Pilgrim. 2017. “Effect of foundry waste on the mechanical properties of Portland cement concrete.” Constr. Build. Mater. 135 (Mar): 674–681. https://doi.org/10.1016/j.conbuildmat.2017.01.028.
Venkatesan, M., Q. Zaib, I. H. Shah, and H. S. Park. 2019. “Optimum utilization of waste foundry sand and fly ash for geopolymer concrete synthesis using D-optimal mixture design of experiments.” Resour. Conserv. Recycl. 148 (Sep): 114–123. https://doi.org/10.1016/j.resconrec.2019.05.008.
Vilenius, M. 2019. Valimohiekan tekniset ominaisuudet ja uusiokäyttö maarakentamisessa, 77. Espoo, Finland: Aalto Univ.
Xiao, J.-L., P. Jing, S.-X. Yu, and P. Wang. 2021. “Analysis on the track quality evolution law of polyurethane-reinforced ballasted track in high-speed railway.” Proc. Inst. Mech. Eng., Part F: J. Rail Rapid Transit 235 (8): 993–1005. https://doi.org/10.1177/0954409720975572.
Yaghoubi, E., A. Arulrajah, M. Yaghoubi, and S. Horpibulsuk. 2020. “Shear strength properties and stress–strain behavior of waste foundry sand.” Constr. Build. Mater. 249 (Jul): 118761. https://doi.org/10.1016/j.conbuildmat.2020.118761.
Yan, F., Z. Lin, X. Wang, F. Azarmi, and K. Sobolev. 2017. “Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm.” Compos. Struct. 161 (Feb): 441–452. https://doi.org/10.1016/j.compstruct.2016.11.068.
Zhang, Y., L. K. Korkiala-Tanttu, and M. Borén. 2019. “Assessment for sustainable use of quarry fines as pavement construction materials: Part II-Stabilization and characterization of quarry fine materials.” Materials 12 (15): 2450. https://doi.org/10.3390/ma12152450.
Zhang, Y., T. Sappinen, L. Korkiala-Tanttu, M. Vilenius, and E. Juuti. 2021. “Investigations into stabilized waste foundry sand for applications in pavement structures.” Resour. Conserv. Recycl. 170 (Jul): 105585. https://doi.org/10.1016/j.resconrec.2021.105585.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 3March 2023

History

Received: Jan 27, 2022
Accepted: Jun 15, 2022
Published online: Dec 28, 2022
Published in print: Mar 1, 2023
Discussion open until: May 28, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Research Fellow, Institute of Mechanical Engineering (IEM), Universidade Federal de Itajubá (UNIFEI), Minas Gerais, Brazil (corresponding author). ORCID: https://orcid.org/0000-0003-0387-622X. Email: [email protected]
Matheus Brendon Francisco [email protected]
Post-Graduate Student, Institute of Mechanical Engineering (IEM), Universidade Federal de Itajubá (UNIFEI), Minas Gerais, Brazil. Email: [email protected]
Roberta Moraes Martins [email protected]
Post-Graduate Student, Institute of Physics and Chemistry (IFQ), Universidade Federal de Itajubá (UNIFEI), Minas Gerais, Brazil. Email: [email protected]
Professor, Institute of Natural Resources (INR), Universidade Federal de Itajubá (UNIFEI), Minas Gerais, Brazil. ORCID: https://orcid.org/0000-0001-7391-9972. Email: [email protected]
Valquíria Claret dos Santos, Ph.D. [email protected]
Professor, Institute of Natural Resources (INR), Universidade Federal de Itajubá (UNIFEI), Minas Gerais, Brazil. Email: [email protected]
Guilherme Ferreira Gomes, Ph.D. [email protected]
Professor, Institute of Mechanical Engineering (IEM), Universidade Federal de Itajubá (UNIFEI), Minas Gerais, Brazil. Email: [email protected]
Mirian de Lourdes Noronha Motta Melo, Ph.D. [email protected]
Professor, Institute of Mechanical Engineering (IEM), Universidade Federal de Itajubá (UNIFEI), Minas Gerais, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share