Technical Papers
Dec 5, 2022

The Spatial Distribution of Microbially Induced Carbonate Precipitation in Sand Column with Different Grouting Strategies

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 2

Abstract

For ground improvement via microbially induced carbonate precipitation (MICP), the spatial distribution of biocementation considerably affects the mechanical performance of soil. This study systematically assessed the CaCO3 spatial distribution in sand columns with various grouting strategies. CaCO3 dispersion along the radial and vertical directions was quantitatively evaluated. Furthermore, a series of biochemical monitoring experiments was conducted to investigate the MICP process in sand. The results indicated that the reversed and downward chemical solution grouting and high rates of microbial grouting all promoted CaCO3 vertical uniformity. Moreover, the grouting strategy slightly affected the dispersion degree of radially distributed CaCO3. The variation coefficient basically ranged from 0.1 to 0.3. However, the variation coefficient for radially distributed CaCO3 along the vertical direction was significantly affected by the chemical grouting direction. The biochemical monitoring results indicated that 38% Ca2+ was even consumed near the chemical solution outlet in the chemical solution grouting process. The initial Ca2+ concentration during the intermittent period gradually decreased along the chemical solution grouting direction. The CaCO3 vertical distribution was controlled by a combination of the total MICP reaction time, biomass, and Ca2+ availability in the intermittent phase. Different CaCO3 distributions resulted in each grouting strategy exhibiting specific applicable engineering requirements. Furthermore, the carbon footprint was preliminarily evaluated. The results in this study provide references for the selection of grouting strategies for the MICP technique in engineering applications.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This work was supported by the National Key Research & Development Plan (Grant No. 2021YFB2600703) and Key Program of National Natural Science Funds (Grant No. 51639002).

References

Almajed, A., H. Khodadadi Tirkolaei, and E. Kavazanjian Jr. 2018. “Baseline investigation on enzyme-induced calcium carbonate precipitation.” J. Geotech. Geoenviron. Eng. 144 (11): 04018081. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001973.
Al Qabany, A., K. Soga, and C. Santamarina. 2012. “Factors affecting efficiency of microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 138 (8): 992–1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.
Arab, M. G., H. Rohy, W. Zeiada, A. Almajed, and M. Omar. 2021. “One-phase EICP biotreatment of sand exposed to various environmental conditions.” J. Mater. Civ. Eng. 33 (3): 04020489. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003596.
Barkouki, T. H., B. C. Martinez, B. M. Mortensen, T. S. Weathers, J. Jong, T. R. Ginn, N. F. Spycher, R. W. Smith, and Y. Fujita. 2011. “Forward and inverse bio-geochemical modeling of microbially induced calcite precipitation in half-meter column experiments.” Transp. Porous Media 90 (1): 23–39. https://doi.org/10.1007/s11242-011-9804-z.
Braun, A., E. Klumpp, R. Azzam, and C. Neukum. 2015. “Transport and deposition of stabilized engineered silver nanoparticles in water saturated loamy sand and silty loam.” Sci. Total Environ. 535 (Dec): 102–112. https://doi.org/10.1016/j.scitotenv.2014.12.023.
Camesano, T. A., and B. E. Logan. 1998. “Influence of fluid velocity and cell concentration on the transport of motile and nonmotile bacteria in porous media.” Environ. Sci. Technol. 32 (11): 1699–1708. https://doi.org/10.1021/es970996m.
Cheng, L., R. Cord-Ruwisch, and M. A. Shahin. 2013. “Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation.” Can. Geotech. J. 50 (1): 81–90. https://doi.org/10.1139/cgj-2012-0023.
Choi, S. G., I. Chang, M. Lee, J. H. Lee, J. T. Han, and T. H. Kwon. 2020. “Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers.” Constr. Build. Mater. 246 (Jun): 118415. https://doi.org/10.1016/j.conbuildmat.2020.118415.
Chu, J., V. Ivanov, M. Naeimi, V. Stabnikov, and H. L. Liu. 2014. “Optimization of calcium-based bioclogging and biocementation of sand.” Acta Geotech. 9 (2): 277–285. https://doi.org/10.1007/s11440-013-0278-8.
Cui, M. J., J. J. Zheng, R. J. Zhang, and H. J. Lai. 2020. “Soil bio-cementation using an improved 2-step injection method.” Arab. J. Geosci. 13 (23): 1–9. https://doi.org/10.1007/s12517-020-06168-y.
Cui, M. J., J. J. Zheng, R. J. Zhang, H. J. Lai, and J. Zhang. 2017. “Influence of cementation level on the strength behaviour of bio-cemented sand.” Acta Geotech. 12 (5): 971–986. https://doi.org/10.1007/s11440-017-0574-9.
Darby, K. M., G. L. Hernandez, J. T. DeJong, R. W. Boulanger, M. G. Gomez, and D. W. Wilson. 2019. “Centrifuge model testing of liquefaction mitigation via microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 145 (10): 04019084. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002122.
DeJong, J. T., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
Do, J., B. M. Montoya, and M. A. Gabr. 2021. “Scour mitigation and erodibility improvement using microbially induced carbonate precipitation.” Geotech. Test. J. 44 (5): 20190478. https://doi.org/10.1520/GTJ20190478.
Gomez, M. G., B. C. Martinez, J. T. DeJong, C. E. Hunt, L. A. deVlaming, D. W. Major, and S. M. Dworatzek. 2015. “Field-scale bio-cementation tests to improve sands.” Ground Improv. 168 (3): 206–216. https://doi.org/10.1680/grim.13.00052.
Hamdan, N., Z. Zhao, M. Mujica, E. Kavazanjian Jr., and X. He. 2016. “Hydrogel-assisted enzyme-induced carbonate mineral precipitation.” J. Mater. Civ. Eng. 28 (10): 04016089. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001604.
Han, Z., X. Cheng, and M. Qiang. 2016. “An experimental study on dynamic response for MICP strengthening liquefiable sands.” Earthquake Eng. Eng. Vibr. 15 (4): 673–679. https://doi.org/10.1007/s11803-016-0357-6.
Harkes, M. P., L. A. V. Paassen, J. L. Booster, V. S. Whiffin, and M. C. M. V. Loosdrecht. 2010. “Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement.” Ecol. Eng. 36 (2): 112–117. https://doi.org/10.1016/j.ecoleng.2009.01.004.
He, J., Y. Gao, Z. Gu, J. Chu, and L. Wang. 2020. “Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand.” J. Mater. Civ. Eng. 32 (5): 04020071. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003100.
Hoang, T., J. Alleman, B. Cetin, and S. G. Choi. 2020. “Engineering properties of biocementation coarse- and fine-grained sand catalyzed by bacterial cells and bacterial enzyme.” J. Mater. Civ. Eng. 32 (4): 04020030. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003083.
Hoang, T., J. Alleman, B. Cetin, K. Ikuma, and S. G. Choi. 2019. “Sand and silty-sand soil stabilization using bacterial enzyme–induced calcite precipitation (BEICP).” Can. Geotech. J. 56 (6): 808–822. https://doi.org/10.1139/cgj-2018-0191.
Hommel, J., E. Lauchnor, R. Gerlach, A. B. Cunningham, A. Ebigbo, R. Helmig, and H. Class. 2016. “Investigating the influence of the initial biomass distribution and injection strategies on biofilm-mediated calcite precipitation in porous media.” Transp. Porous Media 114 (2): 557–579. https://doi.org/10.1007/s11242-015-0617-3.
Hommel, J., E. Lauchnor, A. Phillips, R. Gerlach, A. B. Cunningham, R. Helmig, A. Ebigbo, and H. Class. 2015. “A revised model for microbially induced calcite precipitation: Improvements and new insights based on recent experiments.” Water Resour. Res. 51 (5): 3695–3715. https://doi.org/10.1002/2014WR016503.
Hou, J., M. Zhang, P. Wang, C. Wang, L. Miao, Y. Xu, G. You, B. Lv, Y. Yang, and Z. Liu. 2017. “Transport and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impacts of input concentration, grain size and flow rate.” Water Res. 127 (Dec): 86–95. https://doi.org/10.1016/j.watres.2017.10.017.
Islam, M. T., B. Chittoori, and M. Burbank. 2020. “Evaluating the applicability of biostimulated calcium carbonate precipitation to stabilize clayey soils.” J. Mater. Civ. Eng. 32 (3): 04019369. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003036.
Ivanov, V., and J. Chu. 2008. “Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ.” Rev. Environ. Sci. Biotechnol. 7 (2): 139–153. https://doi.org/10.1007/s11157-007-9126-3.
Jiang, N. J., and K. Soga. 2016. “The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures.” Géotechnique 67 (1): 42–55. https://doi.org/10.1680/jgeot.15.P.182.
Jiang, N. J., C. S. Tang, L. Y. Yin, Y. H. Xie, and B. Shi. 2019. “Applicability of microbial calcification method for sandy-slope surface erosion control.” J. Mater. Civ. Eng. 31 (11): 04019250.1–04019250.11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002897.
Kou, H. L., C. Wu, B. A. Jang, and D. Wang. 2021. “Spatial distribution of CaCO3 in biocemented sandy slope using surface percolation.” J. Mater. Civ. Eng. 33 (6): 06021004. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003729.
Li, C., Y. Wang, T. Zhou, S. Bai, Y. Gao, D. Yao, and L. Li. 2019. “Sulfate acid corrosion mechanism of biogeomaterial based on MICP technology.” J. Mater. Civ. Eng. 31 (7): 1–11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002695.
Liu, L., H. Liu, Y. Xiao, J. Chu, P. Xiao, and Y. Wang. 2017. “Biocementation of calcareous sand using soluble calcium derived from calcareous sand.” Bull. Eng. Geol. Environ. 77 (4): 1781–1791. https://doi.org/10.1007/s10064-017-1106-4.
Liu, S., and X. Gao. 2020. “Evaluation of the anti-erosion characteristics of an MICP coating on the surface of tabia.” J. Mater. Civ. Eng. 32 (10): 04020304. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003408.
Mahawish, A., A. Bouazza, and W. P. Gates. 2018. “Effect of particle size distribution on the bio-cementation of coarse aggregates.” Acta Geotech. 13 (4): 1019–1025. https://doi.org/10.1007/s11440-017-0604-7.
Martin, K. K., T. H. Khodadadi, and E. Kavazanjian Jr. 2020. “Enzyme induced carbonate precipitation: Scale-up of bio-cemented soil columns.” In Geo-Congress 2020, 96–103. Minneapolis: Geo-Institute of ASCE.
Martinez, B. C., J. T. DeJong, and T. R. Ginn. 2014. “Bio-geochemical reactive transport modeling of microbial induced calcite precipitation to predict the treatment of sand in one-dimensional flow.” Comput. Geotech. 58 (May): 1–13. https://doi.org/10.1016/j.compgeo.2014.01.013.
Martinez, B. C., J. T. DeJong, T. R. Ginn, B. M. Montoya, T. H. Barkouki, C. Hunt, B. Tanyu, and D. Major. 2013. “Experimental optimization of microbial-induced carbonate precipitation for soil improvement.” J. Geotech. Geoenviron. Eng. 139 (4): 587–598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
Meyer, F. D., S. Bang, S. Min, L. D. Stetler, and S. S. Bang. 2011. “Microbiologically-induced soil stabilization: Application of Sporosarcina pasteurii for fugitive dust control.” In Geotechnical Special Publication, 4002–4011. Dallas: Geo-Institute of ASCE.
Ministry of Water Resources of the People’s Republic of China. 2021. Standard for geotechnical testing method. GB/50123-2019. Beijing: National Standards of the People’s Republic of China.
Montoya, B. M., and J. T. DeJong. 2015. “Stress-strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Mortensen, B. M., M. J. Haber, J. T. DeJong, L. F. Caslake, and D. C. Nelson. 2011. “Effects of environmental factors on microbial induced calcium carbonate precipitation.” J. Appl. Microbiol. 111 (2): 338–349. https://doi.org/10.1111/j.1365-2672.2011.05065.x.
Mujah, D., L. Cheng, and M. A. Shahin. 2019. “Microstructural and geomechanical study on biocemented sand for optimization of MICP process.” J. Mater. Civ. Eng. 31 (4): 1–10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002660.
Pablo, A., M. Lee, C. Graddy, C. M. Kolbus, and D. C. Nelson. 2020. “Meter-scale biocementation experiments to advance process control and reduce impacts: Examining spatial control, ammonium by-product removal, and chemical reductions.” J. Geotech. Geoenviron. Eng. 146 (11): 04020125. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002377.
Phillips, A. J., E. Lauchnor, J. Eldring, R. Esposito, A. C. Mitchell, R. Gerlach, A. B. Cunningham, and L. H. Spangler. 2013. “Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation.” Environ. Sci. Technol. 47 (1): 142–149. https://doi.org/10.1021/es301294q.
Salifu, E., E. MacLachlan, K. R. Iyer, C. W. Knapp, and A. Tarantino. 2016. “Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation.” Eng. Geol. 201 (Feb): 96–105. https://doi.org/10.1016/j.enggeo.2015.12.027.
Saracho, A. C., S. K. Haigh, and M. E. Jorat. 2020. “Flume study on the effects of microbial induced calcium carbonate precipitation (MICP) on the erosional behaviour of fine sand.” Géotechnique 71 (12): 1135–1149. https://doi.org/10.1680/jgeot.19.P.350.
Sasidharan, S., S. Torkzaban, S. A. Bradford, R. Kookana, D. Page, and P. G. Cook. 2016. “Transport and retention of bacteria and viruses in biochar-amended sand.” Sci. Total Environ. 548 (Apr): 100–109. https://doi.org/10.1016/j.scitotenv.2015.12.126.
Seagren, E. A., and A. H. Aydilek. 2010. Biomediated geomechanical processes. Chichester, UK: Wiley.
State General Administration of the People’s Republic of China for Quality Supervision and Inspection and Quarantine. 2015a. Aluminum coated glass mirror. GB-32025-2015. Beijing: National Standard of the People’s Republic of China.
State General Administration of the People’s Republic of China for Quality Supervision and Inspection and Quarantine. 2015b. The norm of energy consumption per unit product of methanol —Part 2: Natural gas to methanol. GB29436.2-2015. Beijing: National Standard of the People’s Republic of China.
Sun, X., L. Miao, T. Tong, and C. Wang. 2018. “Improvement of microbial-induced calcium carbonate precipitation technology for sand solidification.” J. Mater. Civ. Eng. 30 (11): 1–8. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002507.
Tian, K., X. Wang, S. Zhang, H. Zhang, and A. Yang. 2020. “Effect of reactant injection rate on solidifying aeolian sand via microbially induced calcite precipitation.” J. Mater. Civ. Eng. 32 (10): 04020291. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003391.
Tobler, D. J., M. O. Cuthbert, and V. R. Phoenix. 2014. “Transport of Sporosarcina pasteurii in sandstone and its significance for subsurface engineering technologies.” Appl. Geochem. 42 (Mar): 38–44. https://doi.org/10.1016/j.apgeochem.2014.01.004.
Torkzaban, S., S. S. Tazehkand, S. L. Walker, and S. A. Bradford. 2008. “Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry.” Water Resour. Res. 44 (4): 1–12. https://doi.org/10.1029/2007WR006541.
van Paassen, L. A., R. Ghose, T. J. van der Linden, W. R. van der Star, and M. C. van Loosdrecht. 2010. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
Vasiliadou, I. A., and C. V. Chrysikopoulos. 2011. “Cotransport of Pseudomonas putida and kaolinite particles through water-saturated columns packed with glass beads.” Water Resour. Res. 47 (2): 2144–2150. https://doi.org/10.1029/2010WR009560.
Wang, Y., K. Soga, and N. J. Jiang. 2017. “Microbial induced carbonate precipitation (MICP): The case for microscale perspective.” In Proc., the 19th Int. Conf. on Soil Mechanics and Geotechnical Engineering, 1099–1102. Seoul, Korea: Korean Geotechnical Society.
Wu, C., J. Chu, L. Cheng, and S. Wu. 2019a. “Biogrouting of aggregates using premixed injection method with or without pH adjustment.” J. Mater. Civ. Eng. 31 (9): 06019008. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002874.
Wu, C., J. Chu, S. Wu, L. Cheng, and L. A. van Paassen. 2019b. “Microbially induced calcite precipitation along a circular flow channel under a constant flow condition.” Acta Geotech. 14 (3): 673–683. https://doi.org/10.1007/s11440-018-0747-1.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthquake Eng. 107 (Apr): 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., X. He, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019. “Unconfined compressive and splitting tensile strength of basalt fiber–reinforced biocemented sand.” J. Geotech. Geoenviron. Eng. 145 (9): 04019048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002108.
Yan, Y., Y. Tang, G. Xu, J. Lian, and D. Fu. 2019. “Study on the relationship between mechanical properties and mesostructure of microbial cemented sand bodies.” Adv. Mater. Sci. Eng. 2019 (6): 1–13.
Zamani, A., and B. Montaya. 2017. “Shearing and hydraulic behavior of MICP treated silty sand.” In Geotechnical Frontiers 2017, 290–299. Reston, VA: ASCE.
Zhao, Y., C. Fan, F. Ge, X. Cheng, and P. Liu. 2020. “Enhancing strength of MICP-treated sand with scrap of activated carbon-fiber felt.” J. Mater. Civ. Eng. 32 (4): 1–8. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003136.
Zheng, Q. 2019. The carbon footprint evaluation of hydropower projects during construction phase. Dalian, China: Dalian Univ. of Technology.
Zhong, H., G. Liu, Y. Jiang, J. Yang, Y. Liu, X. Yang, Z. Liu, and G. Zeng. 2017. “Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: A review.” Biotechnol. Adv. 35 (4): 490–504. https://doi.org/10.1016/j.biotechadv.2017.03.009.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 2February 2023

History

Received: Jun 11, 2021
Accepted: Jun 2, 2022
Published online: Dec 5, 2022
Published in print: Feb 1, 2023
Discussion open until: May 5, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Zhifeng Tian, S.M.ASCE [email protected]
Ph.D. Candidate, State Key Laboratory of Coastal and Offshore Engineering, Dalian Univ. of Technology, Dalian, Liaoning 116024, China. Email: [email protected]
Xiaowei Tang [email protected]
Professor, State Key Laboratory of Coastal and Offshore Engineering, Dalian Univ. of Technology, Dalian, Liaoning 116024, China (corresponding author). Email: [email protected]
Zhilong Xiu [email protected]
Professor, School of Life Science and Biotechnology, Dalian Univ. of Technology, Dalian, Liaoning 116024, China. Email: [email protected]
Lecturer, School of Highway, Chang’an Univ., Xi’an, Shaanxi 710064, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share