Technical Papers
Dec 5, 2022

Mechanical Strength and Microstructure of Ultrahigh-Performance Concrete under Long-Term Autoclaving

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 2

Abstract

Solar thermal energy is a technology that collects radiant energy from the sun to generate heat or electricity. Thermal energy storage is required to compensate for the solar thermal energy variations across time scales, and a popular strategy is storing thermal energy in hot water tanks. Due to superior strength and durability, ultrahigh-performance concrete (UHPC) is exploited to construct such water tanks for applications at 200°C. Therefore, the mechanical strength and microstructure of UHPC after long-term temperature-pressure load (autoclaving) is studied. The compressive strength of UHPC can stay robust due to the accelerated formation of hydrates, while the flexural strength is vulnerable to long-term autoclaving due to the transformation of amorphous calcium silicate hydrate (C-S-H) to more ordered phases. The main hydrates in autoclaved samples are poorly crystallized C-S-H, hydroxylellestadite, and hydrogarnet. The porosity of autoclaved samples is not strictly related to the mechanical strength, and the influence of hydrate assemblage outweighs that of porosity on mechanical strength after long-term autoclaving. The partial replacement of cement by limestone powder can decrease crystalline hydrates and increase poorly crystallized C-S-H, which densifies the microstructure and enhances the mechanical strength. However, excessive poorly crystallized C-S-H aggravates the thermal mismatch between the matrix and quartz aggregates after autoclaved samples cool to room temperature, leading to interstice in matrix-quartz interfaces and, thus, reduced mechanical strength. Therefore, an appropriate addition of limestone powder is required to induce the hydrate assemblage with appropriate poorly crystallized C-S-H, ensuring durable UHPC structures under autoclaving.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request, including the data of mechanical test and microstructure characterization.

Acknowledgments

The authors acknowledge the financial support from the German Federal Ministry of Economic Affairs and Energy (No. 03ET1537A).

References

Antoni, M., J. Rossen, F. Martirena, and K. Scrivener. 2012. “Cement substitution by a combination of metakaolin and limestone.” Cem. Concr. Res. 42 (12): 1579–1589. https://doi.org/10.1016/j.cemconres.2012.09.006.
Arora, A., M. Aguayo, H. Hansen, C. Castro, E. Federspiel, B. Mobasher, and N. Neithalath. 2018. “Microstructural packing- and rheology-based binder selection and characterization for Ultra-high Performance Concrete (UHPC).” Cem. Concr. Res. 103 (Jan): 179–190. https://doi.org/10.1016/j.cemconres.2017.10.013.
Arora, A., A. Almujaddidi, F. Kianmofrad, B. Mobasher, and N. Neithalath. 2019a. “Material design of economical ultra-high performance concrete (UHPC) and evaluation of their properties.” Cem. Concr. Compos. 104 (Nov): 103346. https://doi.org/10.1016/j.cemconcomp.2019.103346.
Arora, A., Y. Yao, B. Mobasher, and N. Neithalath. 2019b. “Fundamental insights into the compressive and flexural response of binder- and aggregate-optimized ultra-high performance concrete (UHPC).” Cem. Concr. Compos. 98 (Apr): 1–13. https://doi.org/10.1016/j.cemconcomp.2019.01.015.
Assarsson, G. O., and E. Rydberg. 1956. “Hydrothermal reactions between calcium hydroxide and amorphous silica.” J. Phys. Chem. 60 (4): 397–404. https://doi.org/10.1021/j150538a004.
Bahafid, S., S. Ghabezloo, M. Duc, P. Faure, and J. Sulem. 2017. “Effect of the hydration temperature on the microstructure of Class G cement: C-S-H composition and density.” Cem. Concr. Res. 95 (May): 270–281. https://doi.org/10.1016/j.cemconres.2017.02.008.
Baltakys, K. 2009. “Influence of gypsum additive on the formation of calcium silicate hydrates in mixtures with C/S = 0.83 or 1.0.” Mater. Sci. Poland 27 (4): 1091–1101.
Baltakys, K., and R. Siauciunas. 2010. “Influence of gypsum additive on the gyrolite formation process.” Cem. Concr. Res. 40 (3): 376–383. https://doi.org/10.1016/j.cemconres.2009.11.004.
Barbarulo, R., H. Peycelon, and S. Leclercq. 2007. “Chemical equilibria between C–S–H and ettringite, at 20 and 85°C.” Cem. Concr. Res. 37 (8): 1176–1181. https://doi.org/10.1016/j.cemconres.2007.04.013.
Bauer, D., R. Marx, J. Nußbicker-Lux, F. Ochs, W. Heidemann, and H. Müller-Steinhagen. 2010. “German central solar heating plants with seasonal heat storage.” Sol. Energy 84 (4): 612–623. https://doi.org/10.1016/j.solener.2009.05.013.
Bentz, D. P. 2006. “Modeling the influence of limestone filler on cement hydration using CEMHYD3D.” Cem. Concr. Compos. 28 (2): 124–129. https://doi.org/10.1016/j.cemconcomp.2005.10.006.
Bonavetti, V., V. Rahhal, and E. Irassar. 2001. “Studies on the carboaluminate formation in limestone filler-blended cements.” Cem. Concr. Res. 31 (6): 853–859. https://doi.org/10.1016/S0008-8846(01)00491-4.
Bonnaud, P. A., Q. Ji, and K. J. van Vliet. 2013. “Effects of elevated temperature on the structure and properties of calcium–silicate–hydrate gels: The role of confined water.” Soft Matter 9 (28): 6418–6429. https://doi.org/10.1039/c3sm50975c.
Cagnon, H., T. Vidal, A. Sellier, C. Soula, X. Bourbon, and G. Camps. 2016. “Effects of water and temperature variations on deformation of limestone aggregates, cement paste, mortar and High Performance Concrete (HPC).” Cem. Concr. Compos. 71 (Nov): 131–143. https://doi.org/10.1016/j.cemconcomp.2016.05.013.
Camiletti, J., A. M. Soliman, and M. L. Nehdi. 2012. “Effects of nano- and micro-limestone addition on early-age properties of ultra-high-performance concrete.” Mater. Struct. 46 (6): 881–898. https://doi.org/10.1617/s11527-012-9940-0.
Chen, J. J., J. J. Thomas, H. F. W. Taylor, and H. M. Jennings. 2004. “Solubility and structure of calcium silicate hydrate.” Cem. Concr. Res. 34 (9): 1499–1519. https://doi.org/10.1016/j.cemconres.2004.04.034.
Chen, T., X. Gao, and M. Ren. 2018. “Effects of autoclave curing and fly ash on mechanical properties of ultra-high performance concrete.” Constr. Build. Mater. 158 (Jan): 864–872. https://doi.org/10.1016/j.conbuildmat.2017.10.074.
Dilnesa, B. Z., B. Lothenbach, G. Renaudin, A. Wichser, and D. Kulik. 2014. “Synthesis and characterization of hydrogarnet Ca3(AlxFe1x)2(SiO4)y(OH)4(3y).” Cem. Concr. Res. 59 (May): 96–111. https://doi.org/10.1016/j.cemconres.2014.02.001.
DIN (Deutsche Institut für Normung). 2016. Methods of testing cement—Part 1: Determination of strength. DIN EN 196-1:2016-11. Berlin: DIN.
Durdziński, P. T., M. Ben Haha, M. Zajac, and K. L. Scrivener. 2017. “Phase assemblage of composite cements.” Cem. Concr. Res. 99 (Sep): 172–182. https://doi.org/10.1016/j.cemconres.2017.05.009.
Ectors, D., J. Neubauer, and F. Goetz-Neunhoeffer. 2013. “The hydration of synthetic brownmillerite in presence of low Ca-sulfate content and calcite monitored by quantitative in-situ-XRD and heat flow calorimetry.” Cem. Concr. Res. 54 (Dec): 61–68. https://doi.org/10.1016/j.cemconres.2013.08.011.
Eilers, L. H., and E. B. Nelson. 1979. “Effect of silica particle size on degradation of silica stabilized portland cement.” In Proc., SPE Oilfield and Geothermal Chemistry Symp. Richardson, TX: Society of Petroleum Engineers.
El Bitouri, Y., F. Jamin, C. Pélissou, and M. S. El Youssoufi. 2017. “Tensile and shear bond strength between cement paste and aggregate subjected to high temperature.” Mater. Struct. 50 (6): 1–9. https://doi.org/10.1617/s11527-017-1105-8.
Famy, C., A. R. Brough, and H. Taylor. 2003. “The C-S-H gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on C-S-H, AFm and AFt phase compositions.” Cem. Concr. Res. 33 (9): 1389–1398. https://doi.org/10.1016/S0008-8846(03)00064-4.
Fehling, E., M. Schmidt, J. C. Walraven, T. Leutbecher, and S. Fröhlich. 2014. Ultra-high performance concrete UHPC: Fundamentals—Design—Examples. Berlin: Ernst & Sohn.
Funk, J. E., and D. Dinger. 1993. Predictive process control of crowded particulate suspensions: Applied to ceramic manufacturing. New York: Springer.
Gallucci, E., X. Zhang, and K. L. Scrivener. 2013. “Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H).” Cem. Concr. Res. 53 (Nov): 185–195. https://doi.org/10.1016/j.cemconres.2013.06.008.
Ghafari, E., S. A. Ghahari, H. Costa, E. Júlio, A. Portugal, and L. Durães. 2016. “Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete.” Constr. Build. Mater. 127 (Nov): 43–48. https://doi.org/10.1016/j.conbuildmat.2016.09.123.
Goto, S., K. Suenaga, T. Kado, and M. Fukuhara. 1995. “Calcium silicate carbonation products.” J. Am. Ceram. Soc. 78 (11): 2867–2872. https://doi.org/10.1111/j.1151-2916.1995.tb09057.x.
Guo, X., F. Meng, and H. Shi. 2017. “Microstructure and characterization of hydrothermal synthesis of Al-substituted tobermorite.” Constr. Build. Mater. 133 (Feb): 253–260. https://doi.org/10.1016/j.conbuildmat.2016.12.059.
Haastrup, S., D. Yu, and Y. Yue. 2018. “Impact of minor iron content on crystal structure and properties of porous calcium silicates during synthesis.” Mater. Chem. Phys. 205 (Feb): 180–185. https://doi.org/10.1016/j.matchemphys.2017.11.024.
Heller, A. 2000. “15 years of R&D in central solar heating in Denmark.” Sol. Energy 69 (6): 437–447. https://doi.org/10.1016/S0038-092X(00)00118-3.
Hettema, M. H. H. 1996. “The thermo-mechanical behaviour of sedimentary rock: An experimental study.” Ph.D. thesis, Technical Univ. of Berlin. https://resolver.tudelft.nl/uuid:8f733adc-9765-4005-94e8-84d190295cf1.
Hong, S. Y., and F. P. Glasser. 2004. “Phase relations in the CaO-SiO2-H2O system to 200 °C at saturated steam pressure.” Cem. Concr. Res. 34 (9): 1529–1534. https://doi.org/10.1016/j.cemconres.2003.08.009.
Huang, W., H. Kazemi-Kamyab, W. Sun, and K. Scrivener. 2017. “Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC).” Cem. Concr. Compos. 77 (Mar): 86–101. https://doi.org/10.1016/j.cemconcomp.2016.12.009.
Hüsken, G., and H. Brouwers. 2008. “A new mix design concept for earth-moist concrete: A theoretical and experimental study.” Cem. Concr. Res. 38 (10): 1246–1259. https://doi.org/10.1016/j.cemconres.2008.04.002.
IEA (International Energy Agency). 2019. “Solar energy: Mapping the road ahead.” Accessed February 1, 2022. https://www.iea.org/reports/solar-energy-mapping-the-road-ahead.
IEA (International Energy Agency). 2020. “World Energy Outlook 2020.” Accessed February 1, 2022. https://www.iea.org/reports/world-energy-outlook-2020.
Krakowiak, K. J., J. J. Thomas, S. James, M. Abuhaikal, and F.-J. Ulm. 2018. “Development of silica-enriched cement-based materials with improved aging resistance for application in high-temperature environments.” Cem. Concr. Res. 105 (Mar): 91–110. https://doi.org/10.1016/j.cemconres.2018.01.004.
Kumar, A., T. Oey, G. Falzone, J. Huang, M. Bauchy, M. Balonis, N. Neithalath, J. Bullard, and G. Sant. 2017. “The filler effect: The influence of filler content and type on the hydration rate of tricalcium silicate.” J. Am. Ceram. Soc. 100 (7): 3316–3328. https://doi.org/10.1111/jace.14859.
Kumar, A., T. Oey, S. Kim, D. Thomas, S. Badran, J. Li, F. Fernandes, N. Neithalath, and G. Sant. 2013. “Simple methods to estimate the influence of limestone fillers on reaction and property evolution in cementitious materials.” Cem. Concr. Compos. 42 (Sep): 20–29. https://doi.org/10.1016/j.cemconcomp.2013.05.002.
Labhasetwar, N. K., O. P. Shrivastava, and Y. Y. Medikov. 1991. “Mössbauer study on iron-exchanged calcium silicate hydrate: Ca5-xFexSi6O18H2 · nH2O.” J. Solid State Chem. 93 (1): 82–87. https://doi.org/10.1016/0022-4596(91)90277-O.
Lehmann, C. 2013. “Neue Perspektiven für Ultra-Hochleistungsbeton durch gezielte Beeinflussung des Nanogefüges.” Ph.D. thesis, Technical Univ. of Berlin. https://depositonce.tu-berlin.de/bitstream/11303/4103/1/lehmann_christian.pdf.
Li, P. P., H. Brouwers, W. Chen, and Q. Yu. 2020. “Optimization and characterization of high-volume limestone powder in sustainable ultra-high performance concrete.” Constr. Build. Mater. 242 (May): 118112. https://doi.org/10.1016/j.conbuildmat.2020.118112.
Li, P. P., Y. Cao, H. Brouwers, W. Chen, and Q. L. Yu. 2019. “Development and properties evaluation of sustainable ultra-high performance pastes with quaternary blends.” J. Cleaner Prod. 240 (Dec): 118124. https://doi.org/10.1016/j.jclepro.2019.118124.
Li, W., Z. Huang, F. Cao, Z. Sun, and S. P. Shah. 2015. “Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix.” Constr. Build. Mater. 95 (Oct): 366–374. https://doi.org/10.1016/j.conbuildmat.2015.05.137.
Lothenbach, B., G. Le Saout, E. Gallucci, and K. Scrivener. 2008. “Influence of limestone on the hydration of Portland cements.” Cem. Concr. Res. 38 (6): 848–860. https://doi.org/10.1016/j.cemconres.2008.01.002.
Mangold, D. 2007. “Seasonal storage–A German success story.” Sun Wind Energy 1 (2007): 48–58.
Marincea, S., E. Bilal, J. Verkaeren, M.-L. Pascal, and M. Fonteilles. 2001. “Superposed parageneses in the spurrite-, tilleyite-and gehlenite-bearing skarns from Cornet Hill, Apuseni Mountains, Romania.” Can. Mineral. 39 (5): 1435–1453. https://doi.org/10.2113/gscanmin.39.5.1435.
Matsui, K., J. Kikuma, M. Tsunashima, T. Ishikawa, S.-Y. Matsuno, A. Ogawa, and M. Sato. 2011. “In situ time-resolved X-ray diffraction of tobermorite formation in autoclaved aerated concrete: Influence of silica source reactivity and Al addition.” Cem. Concr. Res. 41 (5): 510–519. https://doi.org/10.1016/j.cemconres.2011.01.022.
Meller, N., K. Kyritsis, and C. Hall. 2009a. “The hydrothermal decomposition of calcium monosulfoaluminate 14-hydrate to katoite hydrogarnet and β-anhydrite: An in-situ synchrotron X-ray diffraction study.” J. Solid State Chem. 182 (10): 2743–2747. https://doi.org/10.1016/j.jssc.2009.07.029.
Meller, N., K. Kyritsis, and C. Hall. 2009b. “The mineralogy of the CaO–Al2O3–SiO2–H2O (CASH) hydroceramic system from 200 to 350°C.” Cem. Concr. Res. 39 (1): 45–53. https://doi.org/10.1016/j.cemconres.2008.10.002.
Mitsuda, T., and H. F. W. Taylor. 1975. “Influence of aluminium on the conversion of calcium silicate hydrate gels into 11 Å tobermorite at 90°C and 120°C.” Cem. Concr. Res. 5 (3): 203–209. https://doi.org/10.1016/0008-8846(75)90001-0.
Morin, V., P. Termkhajornkit, B. Huet, and G. Pham. 2017. “Impact of quantity of anhydrite, water to binder ratio, fineness on kinetics and phase assemblage of belite-ye’elimite-ferrite cement.” Cem. Concr. Res. 99 (Sep): 8–17. https://doi.org/10.1016/j.cemconres.2017.04.014.
Mostafa, N. Y., A. A. Shaltout, H. Omar, and S. A. Abo-El-Enein. 2009. “Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1nm tobermorites.” J. Alloys Compd. 467 (1): 332–337. https://doi.org/10.1016/j.jallcom.2007.11.130.
Myers, R. J., E. L’Hôpital, J. L. Provis, and B. Lothenbach. 2015. “Effect of temperature and aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions.” Cem. Concr. Res. 68 (2): 83–93. https://doi.org/10.1016/j.cemconres.2014.10.015.
Nelson, E. B., L. H. Eilers, and G. L. Kalousek. 1981. “Formation and behavior of calcium silicate hydrates in a geothermal environment.” Cem. Concr. Res. 11 (3): 371–381. https://doi.org/10.1016/0008-8846(81)90109-5.
Nelson, E. B., and D. Guillot. 2006. Well cementing. Sugar Land, TX: Schlumberger.
Nonat, A. 2004. “The structure and stoichiometry of C-S-H.” Cem. Concr. Res. 34 (9): 1521–1528. https://doi.org/10.1016/j.cemconres.2004.04.035.
Oey, T., A. Kumar, J. W. Bullard, N. Neithalath, and G. Sant. 2013. “The filler effect: The influence of filler content and surface area on cementitious reaction rates.” J. Am. Ceram. Soc. 96 (6): 1978–1990. https://doi.org/10.1111/jace.12264.
Ouyang, X., D. A. Koleva, G. Ye, and K. van Breugel. 2017. “Understanding the adhesion mechanisms between C S H and fillers.” Cem. Concr. Res. 100 (Oct): 275–283. https://doi.org/10.1016/j.cemconres.2017.07.006.
Papanicolaou, E., and V. Belessiotis. 2009. “Transient development of flow and temperature fields in an underground thermal storage tank under various charging modes.” Sol. Energy 83 (8): 1161–1176. https://doi.org/10.1016/j.solener.2009.01.017.
Proske, T., S. Hainer, M. Rezvani, and C.-A. Graubner. 2013. “Eco-friendly concretes with reduced water and cement contents—Mix design principles and laboratory tests.” Cem. Concr. Res. 51 (Sep): 38–46. https://doi.org/10.1016/j.cemconres.2013.04.011.
Puerta-Falla, G., M. Balonis, G. Le Saout, G. Falzone, C. Zhang, N. Neithalath, and G. Sant. 2015. “Elucidating the role of the aluminous source on limestone reactivity in cementitious materials.” J. Am. Ceram. Soc. 98 (12): 4076–4089. https://doi.org/10.1111/jace.13806.
Qian, G., D. D. Sun, J. H. Tay, Z. Lai, and G. Xu. 2002. “Autoclave properties of kirschsteinite-based steel slag.” Cem. Concr. Res. 32 (9): 1377–1382. https://doi.org/10.1016/S0008-8846(02)00790-1.
Richardson, I. G. 2004. “Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume.” Cem. Concr. Res. 34 (9): 1733–1777. https://doi.org/10.1016/j.cemconres.2004.05.034.
Rivas-Mercury, J. M., P. Pena, A. H. de Aza, and X. Turrillas. 2008. “Dehydration of Ca3Al2 (SiO4) y (OH) 4 (3y)(0<y<0.176) studied by neutron thermodiffractometry.” J. Eur. Ceram. Soc. 28 (9): 1737–1748. https://doi.org/10.1016/j.jeurceramsoc.2007.12.038.
Scrivener, K. L., R. Snellings, and B. Lothenbach. 2016. A practical guide to microstructural analysis of cementitious materials. Boca Raton, FL: CRC Press.
Sevelsted, T. F., and J. Skibsted. 2015. “Carbonation of C–S–H and C–A–S–H samples studied by 13 C, 27 Al and 29 Si MAS NMR spectroscopy.” Cem. Concr. Res. 71 (May): 56–65. https://doi.org/10.1016/j.cemconres.2015.01.019.
Taylor, H. F. W. 1964. The chemistry of cements. London: Academic Press.
Vikan, H., and H. Justnes. 2007. “Rheology of cementitious paste with silica fume or limestone.” Cem. Concr. Res. 37 (11): 1512–1517. https://doi.org/10.1016/j.cemconres.2007.08.012.
Vladimír, Š., and O. Vepek. 1975. “Thermal decomposition of ettringite under hydrothermal conditions.” J. Am. Ceram. Soc. 58 (7–8): 357–359. https://doi.org/10.1111/j.1151-2916.1975.tb11513.x.
Von Werder, J., S. Simon, C. Lehmann, C. Selleng, P. Fontana, and B. Meng. 2018. “Autoclaving of ultra-high performance concrete (UHPC).” ce/papers 2 (4): 131–136. https://doi.org/10.1002/cepa.866.
Wu, Z., C. Shi, and K. H. Khayat. 2018. “Multi-scale investigation of microstructure, fiber pullout behavior, and mechanical properties of ultra-high performance concrete with nano-CaCO3 particles.” Cem. Concr. Compos. 86 (Feb): 255–265. https://doi.org/10.1016/j.cemconcomp.2017.11.014.
Yang, R., and J. H. Sharp. 2001. “Hydration characteristics of Portland cement after heat curing: I, Degree of hydration of the anhydrous cement phases.” J. Am. Ceram. Soc. 84 (3): 608–614. https://doi.org/10.1111/j.1151-2916.2001.tb00707.x.
Yang, R., R. Yu, Z. Shui, X. Gao, J. Han, G. Lin, D. Qian, Z. Liu, and Y. He. 2020. “Environmental and economical friendly ultra-high performance-concrete incorporating appropriate quarry-stone powders.” J. Cleaner Prod. 260 (Jul): 121112. https://doi.org/10.1016/j.jclepro.2020.121112.
Yazıcı, H., E. Deniz, and B. Baradan. 2013. “The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete.” Constr. Build. Mater. 42 (May): 53–63. https://doi.org/10.1016/j.conbuildmat.2013.01.003.
Yazıcı, H., M. Y. Yardımcı, S. Aydın, and A. Ş. Karabulut. 2009. “Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes.” Constr. Build. Mater. 23 (3): 1223–1231. https://doi.org/10.1016/j.conbuildmat.2008.08.003.
Yazıcı, H., M. Y. Yardımcı, H. Yiğiter, S. Aydın, and S. Türkel. 2010. “Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag.” Cem. Concr. Compos. 32 (8): 639–648. https://doi.org/10.1016/j.cemconcomp.2010.07.005.
Yazıcı, H., H. Yiğiter, A. Ş. Karabulut, and B. Baradan. 2008. “Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete.” Fuel 87 (12): 2401–2407. https://doi.org/10.1016/j.fuel.2008.03.005.
Young, R. A. 2002. The rietveld method. Oxford: Oxford University Press.
Yu, R., P. Spiesz, and H. J. H. Brouwers. 2014. “Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC).” Cem. Concr. Res. 56 (Feb): 29–39. https://doi.org/10.1016/j.cemconres.2013.11.002.
Yu, R., P. Spiesz, and H. J. H. Brouwers. 2015. “Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses.” Cem. Concr. Compos. 55 (Jan): 383–394. https://doi.org/10.1016/j.cemconcomp.2014.09.024.
Zdeb, T. 2017. “An analysis of the steam curing and autoclaving process parameters for reactive powder concretes.” Constr. Build. Mater. 131 (Jan): 758–766. https://doi.org/10.1016/j.conbuildmat.2016.11.026.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 2February 2023

History

Received: Feb 16, 2022
Accepted: May 18, 2022
Published online: Dec 5, 2022
Published in print: Feb 1, 2023
Discussion open until: May 5, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Institute of Civil Engineering, Technische Universität Berlin, Berlin 13355, Germany. ORCID: https://orcid.org/0000-0003-4226-0620
Professor, Institute of Civil Engineering, Technische Universität Berlin, Berlin 13355, Germany (corresponding author). ORCID: https://orcid.org/0000-0002-1893-6785. Email: [email protected]
Christian Lehmann, Ph.D. https://orcid.org/0000-0002-2372-8964
Institute of Civil Engineering, Technische Universität Berlin, Berlin 13355, Germany. ORCID: https://orcid.org/0000-0002-2372-8964

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share