Technical Papers
Nov 30, 2022

Interface Microstructure–Based Mechanical Property Evaluation of C-S-H

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 2

Abstract

The grain–grain interface of cement, which is composed of the complex needle-shaped microstructure of calcium silicate hydrate (C-S-H), is crucial in the development of the mechanical properties of cementitious composites. These C-S-H needles grow radially outward from the grain surface. This work proposes a combined experimental and modeling approach to incorporate the finer details of these needle geometries and the distribution of mechanical properties in an interface-based multiscale mechanical model for hydrating tricalcium silicate (C3S). At micrometer and sub-micrometer length scales (<5  μm), electron microscopy images revealed that the geometrical nature of these needles at the grain interface varies with days of hydration. The mechanical properties of C-S-H at the nanoscale were observed to be higher at the inner core and reduced toward the outer product. The model developed can incorporate the details of these needle microstructures and their mechanical properties at the microscale and can predict the bulk properties of hydrated C3S at higher scales.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors sincerely thank Dr. Saptarshi Sasmal and S. Gautham, Structural Engineering Research Centre, Council of Scientific and Industrial Research (CSIR), Chennai of for their valuable discussions and inputs. The authors also acknowledge the support from Science and Engineering Research Board (SERB), Department of Science and Technology (DST), India for the financial support through Project No. SB/S3/CEE/017/2015.

References

Alex, A., N. K. Ilango, and P. Ghosh. 2018. “Comparative role of chain scission and solvation in the biodegradation of polylactic acid (PLA).” J. Phys. Chem. B 122 (41): 9516–9526. https://doi.org/10.1021/acs.jpcb.8b07930.
Al-Ostaz, A., W. Wu, A. H.-D. Cheng, and C. R. Song. 2010. “A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement.” Composites, Part B 41 (7): 543–549. https://doi.org/10.1016/j.compositesb.2010.06.005.
Bazzoni, A. 2014. “Study of early hydration mechanisms of cement by means of electron microscopy.” In Laboratory of construction material. Lausanne, Switzerland: École Polytechnique Fédérale de Lausanne.
Bentz, D. P. 1997. “Three-dimensional computer simulation of portland cement hydration and microstructure development.” J. Am. Ceram. Soc. 80 (1): 3–21. https://doi.org/10.1111/j.1151-2916.1997.tb02785.x.
Bentz, D. P., C. F. Ferraris, S. Z. Jones, D. Lootens, and F. Zunino. 2017. “Limestone and silica powder replacements for cement: Early-age performance.” Cem. Concr. Compos. 78 (Apr): 43–56. https://doi.org/10.1016/j.cemconcomp.2017.01.001.
Bernard, O., F.-J. Ulm, and E. Lemarchand. 2003. “A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials.” Cem. Concr. Res. 33 (9): 1293–1309. https://doi.org/10.1016/S0008-8846(03)00039-5.
Bishnoi, S., S. Joseph, and A. Kaur. 2018. “Microstructural modelling of the strength of mortars containing fly ash using μic.” Constr. Build. Mater. 163 (Feb): 912–920. https://doi.org/10.1016/j.conbuildmat.2017.12.163.
Bishnoi, S., and K. L. Scrivener. 2009. “μic ic: A new platform for modelling the hydration of cements.” Cem. Concr. Res. 39 (4): 266–274. https://doi.org/10.1016/j.cemconres.2008.12.002.
Breugel, V. 1995. “Numerical simulation of hydration and microstructural development in hardening cement-based materials.” Cem. Concr. Res. 25 (2): 319–331. https://doi.org/10.1016/0008-8846(95)00017-8.
Bullard, J. W., H. M. Jennings, R. A. Livingston, A. Nonat, G. W. Scherer, J. S. Schweitzer, K. L. Scrivener, and J. J. Thomas. 2011. “Mechanisms of cement hydration.” Cem. Concr. Res. 41 (12): 1208–1223. https://doi.org/10.1016/j.cemconres.2010.09.011.
Collier, N. C., J. H. Sharp, N. B. Milestone, J. Hill, and I. H. Godfrey. 2008. “The influence of water removal techniques on the composition and microstructure of hardened cement pastes.” Cem. Concr. Res. 38 (6): 737–744. https://doi.org/10.1016/j.cemconres.2008.02.012.
Constantinides, G., and F.-J. Ulm. 2004. “The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling.” Cem. Concr. Res. 34 (1): 67–80. https://doi.org/10.1016/S0008-8846(03)00230-8.
Cusatis, G., A. Mencarelli, D. Pelessone, and J. Baylot. 2011a. “Lattice discrete particle model (LDPM) for failure behavior of concrete. II: Calibration and validation.” Cem. Concr. Compos. 33 (9): 891–905. https://doi.org/10.1016/j.cemconcomp.2011.02.010.
Cusatis, G., D. Pelessone, and A. Mencarelli. 2011b. “Lattice discrete particle model (LDPM) for failure behavior of concrete. I: Theory.” Cem. Concr. Compos. 33 (9): 881–890. https://doi.org/10.1016/j.cemconcomp.2011.02.011.
Dolado, J. S., and K. van Breugel. 2011. “Recent advances in modeling for cementitious materials.” Cem. Concr. Res. 41 (7): 711–726. https://doi.org/10.1016/j.cemconres.2011.03.014.
Geng, G., R. J. Myers, J. Li, R. Maboudian, C. Carraro, D. A. Shapiro, and P. J. M. Monteiro. 2017a. “Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate.” Sci. Rep. 7 (1): 1–10. https://doi.org/10.1038/srep44032.
Geng, G., R. J. Myers, M. J. A. Qomi, and P. J. M. Monteiro. 2017b. “Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate.” Sci. Rep. 7 (1): 1–8. https://doi.org/10.1038/s41598-017-11146-8.
Haecker, C.-J., E. J. Garboczi, J. W. Bullard, R. B. Bohn, Z. Sun, S. P. Shah, and T. Voigt. 2005. “Modeling the linear elastic properties of Portland cement paste.” Cem. Concr. Res. 35 (10): 1948–1960. https://doi.org/10.1016/j.cemconres.2005.05.001.
Hajilar, S., and B. Shafei. 2015. “Nano-scale investigation of elastic properties of hydrated cement paste constituents using molecular dynamics simulations.” Comput. Mater. Sci. 101 (Apr): 216–226. https://doi.org/10.1016/j.commatsci.2014.12.006.
Horne, A. T., I. G. Richardson, and R. M. D. Brydson. 2007. “Quantitative analysis of the microstructure of interfaces in steel reinforced concrete.” Cem. Concr. Res. 37 (12): 1613–1623. https://doi.org/10.1016/j.cemconres.2007.08.026.
Ioannidou, K., K. J. Krakowiak, M. Bauchy, C. G. Hoover, E. Masoero, S. Yip, F.-J. Ulm, P. Levitz, R. J.-M. Pellenq, and E. del Gado. 2016. “Mesoscale texture of cement hydrates.” Proc. Natl. Acad. Sci. U.S.A. 113 (8): 2029–2034. https://doi.org/10.1073/pnas.1520487113.
Jennings, H. M., and S. K. Johnson. 1986. “Simulation of microstructure development during the hydration of a cement compound.” J. Am. Ceram. Soc. 69 (11): 790–795. https://doi.org/10.1111/j.1151-2916.1986.tb07361.x.
Kim, B., J.-H. Doh, C.-K. Yi, and J.-Y. Lee. 2013. “Effects of structural fibers on bonding mechanism changes in interface between GFRP bar and concrete.” Composites, Part B 45 (1): 768–779. https://doi.org/10.1016/j.compositesb.2012.09.039.
Kirkpartick, R. J., J. L. Yarger, P. F. McMillan, P. Yu, and X. Cong. 1997. “Raman spectroscopy of C-S-H, tobermorite, and jennite.” Adv. Cem. Based Mater. 5 (3–4): 93–99. https://doi.org/10.1016/S1065-7355(97)00001-1.
Masoero, E., E. del Gado, R. J.-M. Pellenq, F.-J. Ulm, and S. Yip. 2012. “Nanostructure and nanomechanics of cement: Polydisperse colloidal packing.” Phys. Rev. Lett. 109 (15): 155503-1–155503-4. https://doi.org/10.1103/PhysRevLett.109.155503.
Masoero, E., E. del Gado, R. J.-M. Pellenq, S. Yip, and F.-J. Ulm. 2014. “Nano-scale mechanics of colloidal C-S-H gels.” Soft Matter 10 (3): 491–499. https://doi.org/10.1039/C3SM51815A.
Mishra, R. K., R. J. Flatt, and H. Heinz. 2013. “Force field for tricalcium silicate and insight into nanoscale properties: Cleavage, initial hydration, and adsorption of organic molecules.” J. Phys. Chem. C 117 (20): 10417–10432. https://doi.org/10.1021/jp312815g.
Mondal, P., S. P. Shah, and L. Marks. 2007. “A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials.” Cem. Concr. Res. 37 (10): 1440–1444. https://doi.org/10.1016/j.cemconres.2007.07.001.
Oliver, W. C., and G. M. Pharr. 1992. “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments.” J. Mater. Res. 7 (6): 1564–1583. https://doi.org/10.1557/JMR.1992.1564.
Ouzia, A., and K. Scrivener. 2018. “The needle model: A new model for the main hydration peak of alite.” Cem. Concr. Res. 115 (Jan): 339–360. https://doi.org/10.1016/j.cemconres.2018.08.005.
Pichler, B., and C. Hellmich. 2011. “Upscaling quasi-brittle strength of cement paste and mortar: A multi-scale engineering mechanics model.” Cem. Concr. Res. 41 (5): 467–476. https://doi.org/10.1016/j.cemconres.2011.01.010.
Puertas, F., S. Goñi, M. S. Hernández, A. Guerrero, C. Varga, M. Palacios, J. S. Dolado, W. Zhu, and T. Howind. 2011. “Hydration of C3S, C2S and their blends. Micro-and nanoscale characterization.” In Proc., 13th Int. Congress on the Chemistry of Cement, edited by A. Palomo, A. Zaragoza, and J. C. L. Agui, 282. Duesseldorf, Germany: ICCC Permanent Secretariat.
Qian, Z., E. Schlangen, G. Ye, and K. van Breugel. 2017. “Modeling framework for fracture in multiscale cement-based material structures.” Materials 10 (6): 587. https://doi.org/10.3390/ma10060587.
Rath, A., S. Mathesan, and P. Ghosh. 2016. “Nanomechanical characterization and molecular mechanism study of nanoparticle reinforced and cross-linked chitosan biopolymer.” J. Mech. Behav. Biomed. Mater. 55 (Mar): 42–52. https://doi.org/10.1016/j.jmbbm.2015.10.005.
Renaudin, G., J. Russias, F. Leroux, F. Frizon, and C. Cau-dit-Coumes. 2009. “Structural characterization of C-S-H and C-A-S-H samples—Part I: Long-range order investigated by Rietveld analyses.” J. Solid State Chem. 182 (12): 3312–3319. https://doi.org/10.1016/j.jssc.2009.09.026.
Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. “NIH Image to ImageJ: 25 years of image analysis.” Nat. Methods 9 (7): 671–675. https://doi.org/10.1038/nmeth.2089.
Scrivener, K. L., P. Juilland, and P. J. M. Monteiro. 2015. “Advances in understanding hydration of Portland cement.” Cem. Concr. Res. 78 (Dec): 38–56. https://doi.org/10.1016/j.cemconres.2015.05.025.
Singh, L. P., W. Zhu, T. Howind, and U. Sharma. 2017. “Quantification and characterization of C-S-H in silica nanoparticles incorporated cementitious system.” Cem. Concr. Compos. 79 (May): 106–116. https://doi.org/10.1016/j.cemconcomp.2017.02.004.
Space, P. 1996. “Simulation of cement hydration and the connectivity of the capillary pore space.” Adv. Cem. Based Mater. 7355 (96): 58–67. https://doi.org/10.1016/S1065-7355(96)90052-8.
Wang, Z., Q. Lv, S. Chen, C. Li, S. Sun, and S. Hu. 2016. “Effect of interfacial bonding on interphase properties in SiO2/epoxy nanocomposite: A molecular dynamics simulation study.” ACS Appl. Mater. Interfaces 8 (11): 7499–7508. https://doi.org/10.1021/acsami.5b11810.
Wasim, M., and M. B. Djukic. 2019. “Hydrogen embrittlement of low carbon structural steel at macro-, micro- and nano-levels.” Int. J. Hydrogen Energy 45 (3): 2145–2156. https://doi.org/10.1016/j.ijhydene.2019.11.070.
Yu, Z., A. Zhou, and D. Lau. 2016. “Mesoscopic packing of disk-like building blocks in calcium silicate hydrate.” Sci. Rep. 6 (1): 1–8. https://doi.org/10.1038/srep36967.
Zhang, J., and G. W. Scherer. 2011. “Comparison of methods for arresting hydration of cement.” Cem. Concr. Res. 41 (10): 1024–1036. https://doi.org/10.1016/j.cemconres.2011.06.003.
Zhang, M., and A. P. Jivkov. 2016. “Micromechanical modelling of deformation and fracture of hydrating cement paste using X-ray computed tomography characterization.” Composites, Part B 88 (Mar): 64–72. https://doi.org/10.1016/j.compositesb.2015.11.007.
Zhou, Y., D. Hou, H. Manzano, C. A. Orozco, G. Geng, P. J. M. Monteiro, and J. Liu. 2017. “Interfacial connection mechanisms in calcium–silicate–hydrates/polymer nanocomposites: A molecular dynamics study.” ACS Appl. Mater. Interfaces 9 (46): 41014–41025. https://doi.org/10.1021/acsami.7b12795.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 2February 2023

History

Received: Oct 16, 2021
Accepted: May 16, 2022
Published online: Nov 30, 2022
Published in print: Feb 1, 2023
Discussion open until: Apr 30, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Scholar, Nanomechanics Laboratory, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India. ORCID: https://orcid.org/0000-0001-9666-4642. Email: [email protected]
Nirrupama Kamala Ilango [email protected]
MS Scholar, Nanomechanics Laboratory, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India. Email: [email protected]
Professor, Nanomechanics Laboratory, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India (corresponding author). ORCID: https://orcid.org/0000-0002-6077-6498. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share