Abstract

Most geopolymer research claims a substantial reduction in carbon dioxide emissions compared with ordinary portland cement concrete. However, geopolymer concretes are not all equally eco-friendly. The environmental benefits of geopolymer concrete cannot be taken for granted. Modeling emissions is necessary to assess the environmental impact of each geopolymer mix. Unfortunately, only studies concerned with carbon dioxide emissions care to provide sophisticated emissions modeling. Such modeling is practically nonexistent for other geopolymer studies; because function-oriented geopolymer research tends to assume the environmental eminence of their designed mixes. This research reviews the last 7 years of geopolymer concrete research to assess the sustainability of the mixes designed by researchers worldwide and to highlight any bad environmental practices in the mix design. The nominal CO2-e equivalent emissions for geopolymer concrete mixes varied from 56 to 661  kg-CO2/m3 for the surveyed mixes. SOx and NOx emissions reached 1,865  g-SOx/m3 and 1,161  g-NOx/m3, respectively. Finally, this paper recommends a simple method for estimating a nominal carbon dioxide emissions value, which can be easily implemented in future geopolymer research.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Abbas, R., M. A. Khereby, H. Y. Ghorab, and N. Elkhoshkhany. 2020. “Preparation of geopolymer concrete using Egyptian kaolin clay and the study of its environmental effects and economic cost.” Clean Technol. Environ. Policy 22 (3): 669–687. https://doi.org/10.1007/s10098-020-01811-4.
ACI (American Concrete Institute). 2008. Guide for selecting proportions for high-strength concrete using portland cement and other cementitious materials. ACI 211.4R-08. Farmington Hills, MI: ACI.
ACI (American Concrete Institute). 2009. Standard practice for selecting proportions for normal, heavyweight, and mass concrete. ACI 211.1-91. Farmington Hills, MI: ACI.
Albidah, A., M. Alghannam, H. Abbas, T. Almusallam, and Y. Al-Salloum. 2021. “Characteristics of metakaolin-based geopolymer concrete for different mix design parameters.” J. Mater. Res. Technol. 10 (Jan): 84–98. https://doi.org/10.1016/j.jmrt.2020.11.104.
Albitar, M., M. S. Mohamed Ali, P. Visintin, and M. Drechsler. 2017. “Durability evaluation of geopolymer and conventional concretes.” Constr. Build. Mater. 136 (Apr): 374–385. https://doi.org/10.1016/j.conbuildmat.2017.01.056.
Alghannam, M., A. Albidah, H. Abbas, and Y. Al-Salloum. 2021. “Influence of critical parameters of mix proportions on properties of MK-based geopolymer concrete.” Arab. J. Sci. Eng. 46 (5): 4399–4408. https://doi.org/10.1007/s13369-020-04970-0.
Alharbi, Y. R., A. A. Abadel, A. A. Salah, O. A. Mayhoub, and M. Kohail. 2021. “Engineering properties of alkali activated materials reactive powder concrete.” Constr. Build. Mater. 271 (Feb): 121550. https://doi.org/10.1016/j.conbuildmat.2020.121550.
Aliabdo, A. A., A. E. M. Abd Elmoaty, and M. A. Emam. 2019. “Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete.” Constr. Build. Mater. 197 (Feb): 339–355. https://doi.org/10.1016/j.conbuildmat.2018.11.086.
Aliabdo, A. A., M. Abd Elmoaty, and H. A. Salem. 2016. “Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance.” Constr. Build. Mater. 121 (Sep): 694–703. https://doi.org/10.1016/j.conbuildmat.2016.06.062.
Amer, I., M. Kohail, M. S. El-Feky, A. Rashad, and M. A. Khalaf. 2021a. “A review on alkali-activated slag concrete.” Ain Shams Eng. J. 12 (2): 1475–1499. https://doi.org/10.1016/j.asej.2020.12.003.
Amer, I., M. Kohail, M. S. El-Feky, A. Rashad, and M. A. Khalaf. 2021b. “Characterization of alkali-activated hybrid slag/cement concrete.” Ain Shams Eng. J. 12 (1): 135–144. https://doi.org/10.1016/j.asej.2020.08.003.
Anjana Chandran, S., and B. R. Beena. 2021. “Development of metakaolin and flyash based geopolymer concrete at ambient temperature curing.” In Vol. 97 of Proc., SECON 2020. Lecture Notes in Civil Engineering, edited by K. Dasgupta, T. K. Sudheesh, K. I. Praseeda, G. Unni Kartha, P. E. Kavitha, S. Jawahar Saud, 151–158. Copenhagen, Denmark: Springer. https://doi.org/10.1007/978-3-030-55115-5_15.
Asadollahfardi, G., A. Katebi, P. Taherian, and A. Panahandeh. 2021. “Environmental life cycle assessment of concrete with different mixed designs.” Int. J. Constr. Manage. 21 (7): 665–676. https://doi.org/10.1080/15623599.2019.1579015.
Assi, L. N., E. E. Deaver, M. K. ElBatanouny, and P. Ziehl. 2016. “Investigation of early compressive strength of fly ash-based geopolymer concrete.” Constr. Build. Mater. 112 (Jun): 807–815. https://doi.org/10.1016/j.conbuildmat.2016.03.008.
Bajpai, R., K. Choudhary, A. Srivastava, K. S. Sangwan, and M. Singh. 2020. “Environmental impact assessment of fly ash and silica fume based geopolymer concrete.” J. Cleaner Prod. 254 (May): 120147. https://doi.org/10.1016/j.jclepro.2020.120147.
Behfarnia, K., M. Shojaci, and R. Mohebi. 2015. “Compressive strength and flexural strength of alkali-activated slag concrete designed by Taguchi method.” Asian J. Civ. Eng. 4 (16): 505–513.
Bellum, R. R., K. Muniraj, and S. R. C. Madduru. 2020. “Exploration of mechanical and durability characteristics of fly ash-GGBFS based green geopolymer concrete.” SN Appl. Sci. 2 (5): 1–10. https://doi.org/10.1007/s42452-020-2720-5.
Bidwe, S. S., and A. A. Hamane. 2015. “Effect of different molarities of sodium hydroxide solution on the strength of geopolymer concrete.” Am. J. Eng. Res 4 (3): 139–145.
Chen, C., G. Habert, Y. Bouzidi, and A. Jullien. 2010a. “Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation.” J. Cleaner Prod. 18 (5): 478–485. https://doi.org/10.1016/j.jclepro.2009.12.014.
Chen, C., G. Habert, Y. Bouzidi, A. Jullien, and A. Ventura. 2010b. “LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete.” Resour. Conserv. Recycl. 54 (12): 1231–1240. https://doi.org/10.1016/j.resconrec.2010.04.001.
Cho, Y.-K., S.-W. Yoo, S.-H. Jung, K.-M. Lee, and S.-J. Kwon. 2017. “Effect of Na2O content, SiO2/Na2O molar ratio, and curing conditions on the compressive strength of FA-based geopolymer.” Constr. Build. Mater. 145 (Aug): 253–260. https://doi.org/10.1016/j.conbuildmat.2017.04.004.
Cong, P., and L. Mei. 2021. “Using silica fume for improvement of fly ash/slag based geopolymer activated with calcium carbide residue and gypsum.” Constr. Build. Mater. 275 (Mar): 122171. https://doi.org/10.1016/j.conbuildmat.2020.122171.
Curran, M. A. 2013. “Life cycle assessment: A review of the methodology and its application to sustainability.” Curr. Opin. Chem. Eng. 2 (3): 273–277. https://doi.org/10.1016/j.coche.2013.02.002.
Dal Pozzo, A., L. Carabba, M. C. Bignozzi, and A. Tugnoli. 2019. “Life cycle assessment of a geopolymer mixture for fireproofing applications.” Int. J. Life Cycle Assess. 24 (10): 1743–1757. https://doi.org/10.1007/s11367-019-01603-z.
Damineli, B. L., F. M. Kemeid, P. S. Aguiar, and V. M. John. 2010. “Measuring the eco-efficiency of cement use.” Cem. Concr. Compos. 32 (8): 555–562. https://doi.org/10.1016/j.cemconcomp.2010.07.009.
Davidovits, J. 1991. “Geopolymers.” J. Therm. Anal. 37 (8): 1633–1656. https://doi.org/10.1007/BF01912193.
Davidovits, J. 2015. “False values on CO2 emission for geopolymer cement/concrete published in scientific papers.” Tech. Pap. 24: 1–9.
Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. van Deventer. 2007a. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
Duxson, P., J. L. Provis, G. C. Lukey, and J. S. J. van Deventer. 2007b. “The role of inorganic polymer technology in the development of ‘green concrete.’” Cem. Concr. Res. 37 (12): 1590–1597. https://doi.org/10.1016/j.cemconres.2007.08.018.
Ekvall, T., and G. Finnveden. 2001. “Allocation in ISO 14041—A critical review.” J. Cleaner Prod. 9 (3): 197–208. https://doi.org/10.1016/S0959-6526(00)00052-4.
European Commission Directive. 2008. “Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives.” Off. J. Eur. Union Legislation 51 (312): 3–30.
Fawer, M., M. Concannon, and W. Rieber. 1999. “Life cycle inventories for the production of sodium silicates.” Int. J. Life Cycle Assess. 4 (4): 207. https://doi.org/10.1007/BF02979498.
Feiz, R., J. Ammenberg, L. Baas, M. Eklund, A. Helgstrand, and R. Marshall. 2015. “Improving the CO2 performance of cement, part I: Utilizing life-cycle assessment and key performance indicators to assess development within the cement industry.” J. Cleaner Prod. 98 (Jul): 272–281. https://doi.org/10.1016/j.jclepro.2014.01.083.
Finnveden, G., M. Z. Hauschild, T. Ekvall, J. Guinée, R. Heijungs, S. Hellweg, A. Koehler, D. Pennington, and S. Suh. 2009. “Recent developments in life cycle assessment.” J. Environ. Manage. 91 (1): 1–21. https://doi.org/10.1016/j.jenvman.2009.06.018.
Flower, D. J. M., and J. G. Sanjayan. 2007. “Green house gas emissions due to concrete manufacture.” Int. J. Life Cycle Assess. 12 (5): 282–288. https://doi.org/10.1065/lca2007.05.327.
García-Segura, T., V. Yepes, and J. Alcalá. 2014. “Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability.” Int. J. Life Cycle Assess. 19 (1): 3–12. https://doi.org/10.1007/s11367-013-0614-0.
Green, D. W., and M. Z. Southard. 2019. Perry’s chemical engineers’ handbook. New York: McGraw-Hill Education.
Gunasekara, C., P. Atzarakis, W. Lokuge, D. W. Law, and S. Setunge. 2021. “Novel analytical method for mix design and performance prediction of high calcium fly ash geopolymer concrete.” Polymers 13 (6): 900. https://doi.org/10.3390/polym13060900.
Habert, G., J. B. d’Espinose de Lacaillerie, and N. Roussel. 2011. “An environmental evaluation of geopolymer based concrete production: Reviewing current research trends.” J. Cleaner Prod. 19 (11): 1229–1238. https://doi.org/10.1016/j.jclepro.2011.03.012.
Habert, G., and C. Ouellet-Plamondon. 2016. “Recent update on the environmental impact of geopolymers.” RILEM Tech. Lett. 1 (Apr): 17–23. https://doi.org/10.21809/rilemtechlett.2016.6.
Hadi, M. N. S., N. A. Farhan, and M. N. Sheikh. 2017. “Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method.” Constr. Build. Mater. 140 (Jun): 424–431. https://doi.org/10.1016/j.conbuildmat.2017.02.131.
Hadi, M. N. S., H. Zhang, and S. Parkinson. 2019. “Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability.” J. Build. Eng. 23 (May): 301–313. https://doi.org/10.1016/j.jobe.2019.02.006.
Hajjaji, W., S. Andrejkovičová, C. Zanelli, M. Alshaaer, M. Dondi, J. A. Labrincha, and F. Rocha. 2013. “Composition and technological properties of geopolymers based on metakaolin and red mud.” Mater. Des. 52 (Dec): 648–654. https://doi.org/10.1016/j.matdes.2013.05.058.
Hamidi, F., F. Aslani, and A. Valizadeh. 2020. “Compressive and tensile strength fracture models for heavyweight geopolymer concrete.” Eng. Fract. Mech. 231 (May): 107023. https://doi.org/10.1016/j.engfracmech.2020.107023.
Hardjito, D., and B. V. Rangan. 2005. Development and properties of low-calcium fly ash-based geopolymer concrete. Perth, Australia: Curtin Univ. of Technology.
Hasanbeigi, A., L. Price, and E. Lin. 2012. “Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review.” Renewable Sustainable Energy Rev. 16 (8): 6220–6238. https://doi.org/10.1016/j.rser.2012.07.019.
Hassan, A., M. Arif, and M. Shariq. 2019. “Use of geopolymer concrete for a cleaner and sustainable environment—A review of mechanical properties and microstructure.” J. Cleaner Prod. 223 (Jun): 704–728. https://doi.org/10.1016/j.jclepro.2019.03.051.
Heath, A., K. Paine, and M. McManus. 2014. “Minimising the global warming potential of clay based geopolymers.” J. Cleaner Prod. 78 (Sep): 75–83. https://doi.org/10.1016/j.jclepro.2014.04.046.
Hossain, M. U., C. S. Poon, Y. H. Dong, and D. Xuan. 2018. “Evaluation of environmental impact distribution methods for supplementary cementitious materials.” Renewable Sustainable Energy Rev. 82 (Feb): 597–608. https://doi.org/10.1016/j.rser.2017.09.048.
Huntzinger, D. N., and T. D. Eatmon. 2009. “A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies.” J. Cleaner Prod. 17 (7): 668–675. https://doi.org/10.1016/j.jclepro.2008.04.007.
Huseien, G. F., and K. W. Shah. 2020. “Durability and life cycle evaluation of self-compacting concrete containing fly ash as GBFS replacement with alkali activation.” Constr. Build. Mater. 235 (Feb): 117458. https://doi.org/10.1016/j.conbuildmat.2019.117458.
ISO. 2006. ISO 14044:2006 environmental management—Life cycle assessment—Requirements and guidelines. Geneva: ISO.
Jawahar, J. G., and G. Mounika. 2016. “Strength properties of fly ash and GGBS based geopolymer concrete.” Asian J. Civ. Eng. 17 (1): 127–135.
Jones, R., M. McCarthy, and M. Newlands. 2011. “Fly ash route to low embodied CO2 and implications for concrete construction.” In Proc., World of Coal Ash Conf., 1–14. Lexington, KY: University Press of Kentucky.
Juengsuwattananon, K., F. Winnefeld, P. Chindaprasirt, and K. Pimraksa. 2019. “Correlation between initial SiO2/Al2O3, Na2O/Al2O3, Na2O/SiO2 and H2O/Na2O ratios on phase and microstructure of reaction products of metakaolin-rice husk ash geopolymer.” Constr. Build. Mater. 226 (Nov): 406–417. https://doi.org/10.1016/j.conbuildmat.2019.07.146.
Junaid, M. T., O. Kayali, A. Khennane, and J. Black. 2015. “A mix design procedure for low calcium alkali activated fly ash-based concretes.” Constr. Build. Mater. 79 (Mar): 301–310. https://doi.org/10.1016/j.conbuildmat.2015.01.048.
Kawai, K., T. Sugiyama, K. Kobayashi, and S. Sano. 2005. “Inventory data and case studies for environmental performance evaluation of concrete structure construction.” J. Adv. Concr. Technol. 3 (3): 435–456. https://doi.org/10.3151/jact.3.435.
Khalil, W. I., Q. J. Frayyeh, and M. F. Ahmed. 2019. “Evaluation of sustainable metakaolin-geopolymer concrete with crushed waste clay brick.” IOP Conf. Ser.: Mater. Sci. Eng. 518 (2): 22053. https://doi.org/10.1088/1757-899X/518/2/022053.
Luan, C., X. Shi, K. Zhang, N. Utashev, F. Yang, J. Dai, and Q. Wang. 2021. “A mix design method of fly ash geopolymer concrete based on factors analysis.” Constr. Build. Mater. 272 (Feb): 121612. https://doi.org/10.1016/j.conbuildmat.2020.121612.
Mayhoub, O. A., A. Mohsen, Y. R. Alharbi, A. A. Abadel, A. O. Habib, and M. Kohail. 2021a. “Effect of curing regimes on chloride binding capacity of geopolymer.” Ain Shams Eng. J. 12 (4): 3659–3668. https://doi.org/10.1016/j.asej.2021.04.032.
Mayhoub, O. A., E.-S. A. R. Nasr, Y. Ali, and M. Kohail. 2021b. “Properties of slag based geopolymer reactive powder concrete.” Ain Shams Eng. J. 12 (1): 99–105. https://doi.org/10.1016/j.asej.2020.08.013.
Mayhoub, O. A., E.-S. A. R. Nasr, Y. A. Ali, and M. Kohail. 2020. “The influence of ingredients on the properties of reactive powder concrete: A review.” Ain Shams Eng. J. 12 (1): 145–158. https://doi.org/10.1016/j.asej.2020.07.016.
McLellan, B. C., R. P. Williams, J. Lay, A. van Riessen, and G. D. Corder. 2011. “Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement.” J. Cleaner Prod. 19 (9–10): 1080–1090. https://doi.org/10.1016/j.jclepro.2011.02.010.
Mendes, B. C., L. G. Pedroti, C. M. F. Vieira, M. Marvila, A. R. G. Azevedo, J. M. Franco de Carvalho, and J. C. L. Ribeiro. 2021. “Application of eco-friendly alternative activators in alkali-activated materials: A review.” J. Build. Eng. 35 (Mar): 102010. https://doi.org/10.1016/j.jobe.2020.102010.
Meyer, C. 2009. “The greening of the concrete industry.” Cem. Concr. Compos. 31 (8): 601–605. https://doi.org/10.1016/j.cemconcomp.2008.12.010.
Mohankumar, G., and R. Manickavasagam. 2017. “Study on the development of class c flyash based GPC by ambient curing.” Int. J. Appl. Eng. Res. 12 (7): 1227–1231.
Mohsen, A., M. S. El-Feky, A. M. El-Tair, and M. Kohail. 2021. “Effect of delayed microwaving on the strength progress of Green alkali activated cement composites.” J. Build. Eng. 43 (Nov): 103135. https://doi.org/10.1016/j.jobe.2021.103135.
Nagaraj, V. K., and D. L. Venkatesh Babu. 2018. “Assessing the performance of molarity and alkaline activator ratio on engineering properties of self-compacting alkaline activated concrete at ambient temperature.” J. Build. Eng. 20 (Nov): 137–155. https://doi.org/10.1016/j.jobe.2018.07.005.
National Research Council. 1975. Air quality and stationary source emission control. Washington, DC: National Academies Press.
Nguyen, T. T., C. I. Goodier, and S. A. Austin. 2020. “Factors affecting the slump and strength development of geopolymer concrete.” Constr. Build. Mater. 261 (Nov): 119945. https://doi.org/10.1016/j.conbuildmat.2020.119945.
NLK. 2002. Ecosmart concrete project metakaolin pre-feasibility study. Vancover, BC, Canada: Ecosmart Concrete.
NREL. 2012. U.S. life cycle inventory database. Washington, DC: USDOE.
Okoye, F. N., J. Durgaprasad, and N. B. Singh. 2016. “Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete.” Ceram. Int. 42 (2): 3000–3006. https://doi.org/10.1016/j.ceramint.2015.10.084.
Okoye, F. N., S. Prakash, and N. B. Singh. 2017. “Durability of fly ash based geopolymer concrete in the presence of silica fume.” J. Cleaner Prod. 149 (Apr): 1062–1067. https://doi.org/10.1016/j.jclepro.2017.02.176.
Oyebisi, S. O., A. N. Ede, F. A. Olutoge, O. M. Ofuyatan, and J. Oluwafemi. 2018. “Influence of alkali concentrations on the mechanical properties of geopolymer concrete.” Int. J. Civ. Eng. Technol. 9 (8): 734–743.
Pasupathy, K., M. Berndt, J. Sanjayan, P. Rajeev, and D. S. Cheema. 2017. “Durability of low-calcium fly ash based geopolymer concrete culvert in a saline environment.” Cem. Concr. Res. 100 (Oct): 297–310. https://doi.org/10.1016/j.cemconres.2017.07.010.
Patankar, S. V., Y. M. Ghugal, and S. S. Jamkar. 2015. “Mix design of fly ash based geopolymer concrete.” In Advances in structural engineering, 1619–1634. New Delhi, India: Springer. https://doi.org/10.1007/978-81-322-2187-6_123.
Patel, Y. J., and N. Shah. 2018. “Study on workability and hardened properties of self compacted geopolymer concrete cured at ambient temperature.” Indian J. Sci. Technol. 11 (7): 1–9. https://doi.org/10.17485/ijst/2018/v11i7/97742.
Pavithra, P., M. Srinivasula Reddy, P. Dinakar, B. Hanumantha Rao, B. K. Satpathy, and A. N. Mohanty. 2016. “A mix design procedure for geopolymer concrete with fly ash.” J. Cleaner Prod. 133 (Oct): 117–125. https://doi.org/10.1016/j.jclepro.2016.05.041.
Phoo-ngernkham, T., C. Phiangphimai, N. Damrongwiriyanupap, S. Hanjitsuwan, J. Thumrongvut, and P. Chindaprasirt. 2018. “A mix design procedure for alkali-activated high-calcium fly ash concrete cured at ambient temperature.” Adv. Mater. Sci. Eng. 2018 (Jan): 1–13. https://doi.org/10.1155/2018/2460403.
Praveen Kumar, V. V., N. Prasad, and S. Dey. 2020. “Influence of metakaolin on strength and durability characteristics of ground granulated blast furnace slag based geopolymer concrete.” Struct. Concr. 21 (3): 1040–1050. https://doi.org/10.1002/suco.201900415.
Prusty, J. K., and B. Pradhan. 2020. “Multi-response optimization using Taguchi-Grey relational analysis for composition of fly ash-ground granulated blast furnace slag based geopolymer concrete.” Constr. Build. Mater. 241 (Apr): 118049. https://doi.org/10.1016/j.conbuildmat.2020.118049.
Ramadan, A. E. K. 2004. “Acid deposition phenomena.” Accessed July 1, 2004. https://www.osti.gov/etdeweb/biblio/21208538.
Randall, R., D. Meyer, W. Inwersen, D. Vineyard, M. Bergmann, S. Unger, and M. Gonzalez. 2016. Life cycle inventory (LCI) data-treatment chemicals, construction materials, transportation, on-site equipment, and other processes for use in spreadsheets for environmental footprint analysis (SEPA). Washington, DC: USEPA.
Reddy, M. S., P. Dinakar, and B. H. Rao. 2018. “Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete.” J. Build. Eng. 20 (Nov): 712–722. https://doi.org/10.1016/j.jobe.2018.09.010.
Refaat, M., A. Mohsen, E. S. A. R. Nasr, and M. Kohail. 2021. “Minimizing energy consumption to produce safe one-part alkali-activated materials.” J. Cleaner Prod. 323 (Nov): 129137. https://doi.org/10.1016/j.jclepro.2021.129137.
Salas, D. A., A. D. Ramirez, N. Ulloa, H. Baykara, and A. J. Boero. 2018. “Life cycle assessment of geopolymer concrete.” Constr. Build. Mater. 190 (Nov): 170–177. https://doi.org/10.1016/j.conbuildmat.2018.09.123.
Serag Faried, A., W. H. Sofi, A.-Z. Taha, M. A. El-Yamani, and T. A. Tawfik. 2020. “Mix design proposed for geopolymer concrete mixtures based on ground granulated blast furnace slag.” Aust. J. Civ. Eng. 18 (2): 205–218. https://doi.org/10.1080/14488353.2020.1761513.
Shahmansouri, A. A., M. Nematzadeh, and A. Behnood. 2021. “Mechanical properties of GGBFS-based geopolymer concrete incorporating natural zeolite and silica fume with an optimum design using response surface method.” J. Build. Eng. 36 (Apr): 102138. https://doi.org/10.1016/j.jobe.2020.102138.
Shanks, W., C. F. Dunant, M. P. Drewniok, R. C. Lupton, A. Serrenho, and J. M. Allwood. 2019. “How much cement can we do without? Lessons from cement material flows in the UK.” Resour. Conserv. Recycl. 141 (Feb): 441–454. https://doi.org/10.1016/j.resconrec.2018.11.002.
Shobeiri, V., B. Bennett, T. Xie, and P. Visintin. 2021. “A comprehensive assessment of the global warming potential of geopolymer concrete.” J. Cleaner Prod. 297 (May): 126669. https://doi.org/10.1016/j.jclepro.2021.126669.
Sindhunata, J. S., J. Van Deventer, G. C. Lukey, and H. Xu. 2006. “Effect of curing temperature and silicate concentration on fly-ash-based geopolymerization.” Ind. Eng. Chem. Res. 45 (10): 3559–3568. https://doi.org/10.1021/ie051251p.
Stengel, T., D. Heinz, and J. Reger. 2009. “Life cycle assessment of geopolymer concrete–what is the environmental benefit.” In Proc., 24th Biennial Conf. of the Concrete Institute of Australia. North Sydney, NSW, Australia: Concrete Institute of Australia.
Talaat, A., A. Emad, A. Tarek, M. Masbouba, A. Essam, and M. Kohail. 2020. “Factors affecting the results of concrete compression testing: A review.” Ain Shams Eng. J. 12 (1): 205–221. https://doi.org/10.1016/j.asej.2020.07.015.
Tchakouté, H. K., C. H. Rüscher, S. Kong, E. Kamseu, and C. Leonelli. 2016. “Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study.” Constr. Build. Mater. 114 (Jul): 276–289. https://doi.org/10.1016/j.conbuildmat.2016.03.184.
Thannimalay, L., S. Yusoff, and N. Z. Zawawi. 2013. “Life cycle assessment of sodium hydroxide.” Aust. J. Basic Appl. Sci. 7 (2): 421–431.
Turner, L. K., and F. G. Collins. 2013. “Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete.” Constr. Build. Mater. 43 (Jun): 125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023.
Vignesh, P., and K. Vivek. 2015. “An experimental investigation on strength parameters of flyash based geopolymer concrete with GGBS.” Int. Res. J. Eng. Technol. 2 (2): 135–142.
WBCSD and IEA (World Business Council for Sustainable Development and International Energy Agency). 2018. Technology roadmap low-carbon transition in the cement industry. Paris: IEA.
Weidema, B. P., and J. H. Schmidt. 2010. “Avoiding allocation in life cycle assessment revisited.” J. Ind. Ecol. 14 (2): 192–195. https://doi.org/10.1111/j.1530-9290.2010.00236.x.
Weil, M., K. Dombrowski, and A. Buchwald. 2009. “Life-cycle analysis of geopolymers.” In Geopolymers, 194–210. Sawston, UK: Woodhead Publishing. https://doi.org/10.1533/9781845696382.2.194.
Xie, J., W. Chen, J. Wang, C. Fang, B. Zhang, and F. Liu. 2019. “Coupling effects of recycled aggregate and GGBS/metakaolin on physicochemical properties of geopolymer concrete.” Constr. Build. Mater. 226 (Nov): 345–359. https://doi.org/10.1016/j.conbuildmat.2019.07.311.
Xie, T., P. Visintin, X. Zhao, and R. Gravina. 2020. “Mix design and mechanical properties of geopolymer and alkali activated concrete: Review of the state-of-the-art and the development of a new unified approach.” Constr. Build. Mater. 256 (Sep): 119380. https://doi.org/10.1016/j.conbuildmat.2020.119380.
Yang, K.-H., J.-K. Song, and K.-I. Song. 2013. “Assessment of CO2 reduction of alkali-activated concrete.” J. Cleaner Prod. 39 (Jan): 265–272. https://doi.org/10.1016/j.jclepro.2012.08.001.
Zhang, H., X. Shi, and Q. Wang. 2018. “Effect of curing condition on compressive strength of fly ash geopolymer concrete.” ACI Mater. J. 115 (2): 191–196. https://doi.org/10.14359/51701124.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 1January 2023

History

Received: Aug 30, 2021
Accepted: Apr 20, 2022
Published online: Oct 25, 2022
Published in print: Jan 1, 2023
Discussion open until: Mar 25, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

B.Sc. Student, Dept. of Structural Engineering, Faculty of Engineering, Ain Shams Univ., Elsarayat St., Abbasia 11517, Cairo, Egypt. ORCID: https://orcid.org/0000-0002-1729-2113. Email: [email protected]
B.Sc. Student, Dept. of Structural Engineering, Faculty of Engineering, Ain Shams Univ., Elsarayat St., Abbasia 11517, Cairo, Egypt. ORCID: https://orcid.org/0000-0002-7568-2427. Email: [email protected]
Associate Professor, Dept. of Structural Engineering, Faculty of Engineering, Ain Shams Univ., Elsarayat St., Abbasia 11517, Cairo, Egypt (corresponding author). ORCID: https://orcid.org/0000-0001-5220-1849. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share