Abstract

Mine tailings (MTs) that are rich in aluminosilicates can be reused to create geopolymer via alkaline activation as an alternative to portland cement concrete for construction and building applications. However, pure MTs may lack sufficient aluminum or amorphous aluminosilicates to facilitate geopolymerization that competes with traditional concrete. It is essential, therefore, to add supplemental aluminum source materials and amorphous aluminosilicates to adjust the SiAl ratio to change the geopolymeric cell structures of MTs. The study presented in this paper utilized Class F fly ash (FA) as the amorphous supplement for better reactivity or aluminum source to alter the SiAl ratio that can be reacted through alkali activation to facilitate better geopolymerization. First, a series of laboratory tests was conducted to obtain the characterizations of the FA. Then geopolymer samples using different amounts of FA were produced by activating the MTs+FA mixtures with 10 M NaOH solutions at a moisture ratio of 16% cured for 7 days with a slightly elevated temperature. Finally, uniaxial compression tests (UCTs) were applied to evaluate the influence of the addition of different amounts of FA (5%, 10%, 15%, and 20%) on the compressive behaviors. In addition, microscopic insights with different FA additions were evaluated regarding morphology, chemical bonds, and mineralogy. Results show that adding FA supplements based on the initial moisture content and curing conditions increased the mechanical behavior of the geopolymer specimens, followed by a decrease due to insufficient water for a chemical reaction. However, due to the water loss during the curing process, improvement in mechanical properties began to decrease when the FA was increased to 20%.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

We acknowledge the financial support provided for this work by the Universidad Nacional de San Agustín (UNSA) through the joint Center for Mining Sustainability with the Colorado School of Mines.

References

Ahmari, S., and L. Zhang. 2012. “Production of eco-friendly bricks from copper mine tailings through geopolymerization.” Constr. Build. Mater. 29 (Apr): 323–331. https://doi.org/10.1016/j.conbuildmat.2011.10.048.
Ahmed, H. Q., D. K. Jaf, and S. A. Yaseen. 2020. “Flexural strength and failure of geopolymer concrete beams reinforced with carbon fibre-reinforced polymer bars.” Constr. Build. Mater. 231 (Jan): 117185. https://doi.org/10.1016/j.conbuildmat.2019.117185.
Alanazi, H., M. Yang, D. Zhang, and Z. Gao. 2017. “Early strength and durability of metakaolin-based geopolymer concrete.” Mag. Concr. Res. 69 (1): 46–54. https://doi.org/10.1680/jmacr.16.00118.
Albidah, A., M. Alghannam, H. Abbas, T. Almusallam, and Y. Al-Salloum. 2021. “Characteristics of metakaolin-based geopolymer concrete for different mix design parameters.” J. Mater. Res. Technol. 10 (Jan): 84–98. https://doi.org/10.1016/j.jmrt.2020.11.104.
Albidah, A., A. Altheeb, F. Alrshoudi, A. Abadel, H. Abbas, and Y. Al-Salloum. 2020. “Bond performance of GFRP and steel rebars embedded in metakaolin based geopolymer concrete.” Structures 27 (Oct): 1582–1593. https://doi.org/10.1016/j.istruc.2020.07.048.
Argane, R., M. Benzaazoua, R. Hakkou, and A. Bouamrane. 2015. “Reuse of base-metal tailings as aggregates for rendering mortars: Assessment of immobilization performances and environmental behavior.” Constr. Build. Mater. 96 (Oct): 296–306. https://doi.org/10.1016/j.conbuildmat.2015.08.029.
ASTM. 2009. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM D6913-04(2009) e1. West Conshohocken, PA: ASTM.
ASTM. 2013. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). ASTM C106. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM D7928-17. West Conshohocken, PA: ASTM.
ASTM. 2018. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318-17e1. West Conshohocken, PA: ASTM.
Awolusi, T. F., O. L. Oke, O. D. Atoyebi, O. O. Akinkurolere, and A. O. Sojobi. 2021. “Waste tires steel fiber in concrete: A review.” Innovative Infrastruct. Solutions 6 (1): 1–12. https://doi.org/10.1007/s41062-020-00393-w.
Bajpai, R., K. Choudhary, A. Srivastava, K. S. Sangwan, and M. Singh. 2020. “Environmental impact assessment of fly ash and silica fume based geopolymer concrete.” J. Cleaner Prod. 254 (May): 120147. https://doi.org/10.1016/j.jclepro.2020.120147.
Barcelo, L., J. Kline, G. Walenta, and E. Gartner. 2014. “Cement and carbon emissions.” Mater. Struct. 47 (6): 1055–1065. https://doi.org/10.1617/s11527-013-0114-5.
Chauhan, R., R. Kumar, P. K. Diwan, and V. Sharma. 2020. “Thermogravimetric analysis and chemometric based methods for soil examination: Application to soil forensics.” Forensic Chem. 17 (May): 100191. https://doi.org/10.1016/j.forc.2019.100191.
Chindaprasirt, P., and U. Rattanasak. 2018. “Fire-resistant geopolymer bricks synthesized from high-calcium fly ash with outdoor heat exposure.” Clean Technol. Environ. Policy 20 (5): 1097–1103. https://doi.org/10.1007/s10098-018-1532-4.
Dassekpo, J. B. M., J. Ning, and X. Zha. 2018. “Potential solidification/stabilization of clay-waste using green geopolymer remediation technologies.” Process Saf. Environ. Prot. 117 (Jul): 684–693. https://doi.org/10.1016/j.psep.2018.06.013.
Davidovits, J. 2020. Geopolymers: Chemistry and applications. Saint-Quentin: Geopolymer Institute.
Demir, F., and E. M. Derun. 2019. “Modelling and optimization of gold mine tailings based geopolymer by using response surface method and its application in Pb2+ removal.” J. Cleaner Prod. 237 (Nov): 117766. https://doi.org/10.1016/j.jclepro.2019.117766.
Dong, S., B. Han, X. Yu, and J. Ou. 2019. “Constitutive model and reinforcing mechanisms of uniaxial compressive property for reactive powder concrete with super-fine stainless wire.” Composites, Part B 166 (Jun): 298–309. https://doi.org/10.1016/j.compositesb.2018.12.015.
dos Santos, L. F., J. M. F. de Carvalho, R. A. F. Peixoto, and G. J. Brigolini. 2019. “Iron ore tailing-based geopolymer containing glass wool residue: A study of mechanical and microstructural properties.” Constr. Build. Mater. 220 (Sep): 375–385. https://doi.org/10.1016/j.conbuildmat.2019.05.181.
Falayi, T. 2019. “A comparison between fly ash- and basic oxygen furnace slag-modified gold mine tailings geopolymers.” Int. J. Energy Environ. Eng. 11 (2): 1207–11217. https://doi.org/10.1007/s40095-019-00328-x.
Falayi, T., F. Ntuli, and F. Okonta. 2018. “Synthesis of a paste backfill geopolymer using pure acidic gold mine tailings.” J. Solid Waste Technol. Manage. 44 (4): 311–320. https://doi.org/10.5276/JSWTM.2018.311.
Farina, I., M. Modano, G. Zuccaro, R. Goodall, and F. Colangelo. 2018. “Improving flexural strength and toughness of geopolymer mortars through additively manufactured metallic rebars.” Composites, Part B 145 (Jul): 155–161. https://doi.org/10.1016/j.compositesb.2018.03.017.
Ghadir, P., and N. Ranjbar. 2018. “Clayey soil stabilization using geopolymer and Portland cement.” Constr. Build. Mater. 188 (7): 361–371. https://doi.org/10.1016/j.conbuildmat.2018.07.207.
Goldstein, J. I., D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy. 2017. Scanning electron microscopy and X-ray microanalysis. New York: Springer.
Gong, F., J. Yan, S. Luo, and X. Li. 2019. “Investigation on the linear energy storage and dissipation laws of rock materials under uniaxial compression.” Rock Mech. Rock Eng. 52 (11): 4237–4255. https://doi.org/10.1007/s00603-019-01842-4.
Hoy, M., S. Horpibulsuk, R. Rachan, A. Chinkulkijniwat, and A. Arulrajah. 2016. “Recycled asphalt pavement–fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations.” Sci. Total Environ. 573 (Dec): 19–26. https://doi.org/10.1016/j.scitotenv.2016.08.078.
Hoy, M., R. Rachan, S. Horpibulsuk, A. Arulrajah, and M. Mirzababaei. 2017. “Effect of wetting–drying cycles on compressive strength and microstructure of recycled asphalt pavement–fly ash geopolymer.” Constr. Build. Mater. 144 (Jul): 624–634. https://doi.org/10.1016/j.conbuildmat.2017.03.243.
Hu, S., et al. 2020. “Synthesis of rare earth tailing-based geopolymer for efficiently immobilizing heavy metals.” Constr. Build. Mater. 254 (Sep): 119273. https://doi.org/10.1016/j.conbuildmat.2020.119273.
Jiao, X., Y. Zhang, and T. Chen. 2013. “Thermal stability of a silica-rich vanadium tailing based geopolymer.” Constr. Build. Mater. 38 (Jan): 43–47. https://doi.org/10.1016/j.conbuildmat.2012.06.076.
Kiventerä, J., I. Lancellotti, M. Catauro, F. Dal Poggetto, C. Leonelli, and M. Illikainen. 2018. “Alkali activation as new option for gold mine tailings inertization.” J. Cleaner Prod. 187 (Jun): 76–84. https://doi.org/10.1016/j.jclepro.2018.03.182.
Kristl, M., M. Muršec, V. Šuštar, and J. Kristl. 2016. “Application of thermogravimetric analysis for the evaluation of organic and inorganic carbon contents in agricultural soils.” J. Therm. Anal. Calorim. 123 (3): 2139–2147. https://doi.org/10.1007/s10973-015-4844-1.
Madejová, J. 2003. “FTIR techniques in clay mineral studies.” Vib. Spectrosc. 31 (1): 1–10. https://doi.org/10.1016/S0924-2031(02)00065-6.
Manjarrez, L., A. Nikvar-Hassani, R. Shadnia, and L. Zhang. 2019. “Experimental study of geopolymer binder synthesized with copper mine tailings and low-calcium copper slag.” J. Mater. Civ. Eng. 31 (8): 04019156. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002808.
Mansouri, H., and R. Ajalloeian. 2018. “Mechanical behavior of salt rock under uniaxial compression and creep tests.” Int. J. Rock Mech. Min. Sci. 110 (Oct): 19–27. https://doi.org/10.1016/j.ijrmms.2018.07.006.
Margenot, A. J., F. J. Calderón, K. W. Goyne, F. N. Dmukome, and S. J. Parikh. 2016. “IR spectroscopy, soil analysis applications.” In Encyclopedia of spectroscopy and spectrometry, 448–454. Amsterdam: Elsevier.
Mehta, A., and R. Siddique. 2018. “Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties.” J. Cleaner Prod. 205 (Dec): 49–57. https://doi.org/10.1016/j.jclepro.2018.08.313.
Mehta, A., R. Siddique, T. Ozbakkaloglu, F. U. A. Shaikh, and R. Belarbi. 2020. “Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties.” Constr. Build. Mater. 257 (Oct): 119548. https://doi.org/10.1016/j.conbuildmat.2020.119548.
MOHURD (Ministry of Housing and Urban-Rural Development of the People’s Republic of China). 2011. Code for design of concrete structures. GB 50010–2010. Beijing: Architecture and Building Press.
Moukannaa, S., M. Loutou, M. Benzaazoua, L. Vitola, J. Alami, and R. Hakkou. 2018. “Recycling of phosphate mine tailings for the production of geopolymers.” J. Cleaner Prod. 185 (Sep): 891–903. https://doi.org/10.1016/j.jclepro.2018.03.094.
Moukannaa, S., A. Nazari, A. Bagheri, M. Loutou, J. G. Sanjayan, and R. Hakkou. 2019. “Alkaline fused phosphate mine tailings for geopolymer mortar synthesis: Thermal stability, mechanical and microstructural properties.” J. Non-Cryst. Solids 511 (May): 76–85. https://doi.org/10.1016/j.jnoncrysol.2018.12.031.
Nath, P., and P. K. Sarker. 2017. “Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete.” Constr. Build. Mater. 130 (Jan): 22–31. https://doi.org/10.1016/j.conbuildmat.2016.11.034.
Nguyen, K. T., N. Ahn, T. A. Le, and K. Lee. 2016. “Theoretical and experimental study on mechanical properties and flexural strength of fly ash-geopolymer concrete.” Constr. Build. Mater. 106 (Mar): 65–77. https://doi.org/10.1016/j.conbuildmat.2015.12.033.
Nguyen, T. T., H. H. Bui, T. D. Ngo, G. D. Nguyen, M. U. Kreher, and F. Darve. 2019. “A micromechanical investigation for the effects of pore size and its distribution on geopolymer foam concrete under uniaxial compression.” Eng. Fract. Mech. 209 (Mar): 228–244. https://doi.org/10.1016/j.engfracmech.2019.01.033.
Okoye, F. N., J. Durgaprasad, and N. B. Singh. 2015. “Mechanical properties of alkali activated flyash/Kaolin based geopolymer concrete.” Constr. Build. Mater. 98 (Nov): 685–691. https://doi.org/10.1016/j.conbuildmat.2015.08.009.
Olivia, M., and H. Nikraz. 2012. “Properties of fly ash geopolymer concrete designed by Taguchi method.” Mater. Des. 36 (Apr): 191–198. https://doi.org/10.1016/j.matdes.2011.10.036.
Panias, D., I. P. Giannopoulou, and T. Perraki. 2007. “Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers.” Colloids Surf., A 301 (1–3): 246–254. https://doi.org/10.1016/j.colsurfa.2006.12.064.
Perná, I., and T. Hanzlíček. 2014. “The solidification of aluminum production waste in geopolymer matrix.” J. Cleaner Prod. 84 (Dec): 657–662. https://doi.org/10.1016/j.jclepro.2014.04.043.
Petit, T., and L. Puskar. 2018. “FTIR spectroscopy of nanodiamonds: Methods and interpretation.” Diam. Relat. Mater. 89 (Oct): 52–66. https://doi.org/10.1016/j.diamond.2018.08.005.
Praveen Kumar, V. V., N. Prasad, and S. Dey. 2020. “Influence of metakaolin on strength and durability characteristics of ground granulated blast furnace slag based geopolymer concrete.” Struct. Concr. 21 (3): 1040–1050. https://doi.org/10.1002/suco.201900415.
Prime, R. B., H. E. Bair, S. Vyazovkin, P. K. Gallagher, and A. Riga. 2009. “Thermogravimetric analysis (TGA).” In Thermal analysis of polymers: Fundamentals and applications, 241–317. New York, NY: Wiley.
Puertas, F., S. Martínez-Ramírez, S. Alonso, and T. Vázquez. 2000. “Alkali-activated fly ash/slag cements: strength behaviour and hydration products.” Cem. Concr. Res. 30 (10): 1625–1632. https://doi.org/10.1016/S0008-8846(00)00298-2.
Rajisha, K. R., B. Deepa, L. A. Pothan, and S. Thomas. 2011. “Thermomechanical and spectroscopic characterization of natural fibre composites.” In Interface engineering of natural fibre composites for maximum performance, 241–274. Amsterdam, Netherlands: Elsevier.
Rattanasak, U., and P. Chindaprasirt. 2009. “Influence of NaOH solution on the synthesis of fly ash geopolymer.” Miner. Eng. 22 (12): 1073–1078. https://doi.org/10.1016/j.mineng.2009.03.022.
Ren, X., L. Zhang, D. Ramey, B. Waterman, and S. Ormsby. 2015. “Utilization of aluminum sludge (AS) to enhance mine tailings-based geopolymer.” J. Mater. Sci. 50 (3): 1370–1381. https://doi.org/10.1007/s10853-014-8697-y.
Sánchez-Sánchez, A., M. Cerdán, J. D. Jordá, B. Amat, and J. Cortina. 2019. “Characterization of soil mineralogy by FTIR: Application to the analysis of mineralogical changes in soils affected by vegetation patches.” Plant Soil 439 (1): 447–458. https://doi.org/10.1007/s11104-019-04061-6.
Scrivener, K., R. Snellings, and B. Lothenbach. 2018. A practical guide to microstructural analysis of cementitious materials. Boca Raton, FL: CRC Press.
Scrivener, K. L., and R. J. Kirkpatrick. 2008. “Innovation in use and research on cementitious material.” Cem. Concr. Res. 38 (2): 128–136. https://doi.org/10.1016/j.cemconres.2007.09.025.
Shi, Z., M. R. Geiker, B. Lothenbach, K. De Weerdt, S. F. Garzón, K. Enemark-Rasmussen, and J. Skibsted. 2017. “Friedel’s salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution.” Cem. Concr. Compos. 78 (Apr): 73–83. https://doi.org/10.1016/j.cemconcomp.2017.01.002.
Singh, B., G. Ishwarya, M. Gupta, and S. K. Bhattacharyya. 2015. “Geopolymer concrete: A review of some recent developments.” Constr. Build. Mater. 85 (Jun): 78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036.
Sukprasert, S., M. Hoy, S. Horpibulsuk, A. Arulrajah, A. S. A. Rashid, and R. Nazir. 2021. “Fly ash based geopolymer stabilisation of silty clay/blast furnace slag for subgrade applications.” Road Mater. Pavement Des. 22 (2): 357–371. https://doi.org/10.1080/14680629.2019.1621190.
Taerwe, L., and S. Matthys. 2013. Fib model code for concrete structures 2010. Lausanne, Switzerland: Wiley.
Tho-In, T., V. Sata, K. Boonserm, and P. Chindaprasirt. 2018. “Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash.” J. Cleaner Prod. 172 (Jan): 2892–2898. https://doi.org/10.1016/j.jclepro.2017.11.125.
Tian, X., W. Xu, S. Song, F. Rao, and L. Xia. 2020. “Effects of curing temperature on the compressive strength and microstructure of copper tailing-based geopolymers.” Chemosphere 253 (Aug): 126754. https://doi.org/10.1016/j.chemosphere.2020.126754.
Toniolo, N., and A. R. Boccaccini. 2017. “Fly ash-based geopolymers containing added silicate waste. A review.” Ceram. Int. 43 (17): 14545–14551. https://doi.org/10.1016/j.ceramint.2017.07.221.
Toniolo, N., A. Rincón, J. A. Roether, P. Ercole, E. Bernardo, and A. R. Boccaccini. 2018. “Extensive reuse of soda-lime waste glass in fly ash-based geopolymers.” Constr. Build. Mater. 188 (Nov): 1077–1084. https://doi.org/10.1016/j.conbuildmat.2018.08.096.
Turner, L. K., and F. G. Collins. 2013. “Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete.” Constr. Build. Mater. 43 (Jun): 125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023.
Vafaei, M., and A. Allahverdi. 2017. “High strength geopolymer binder based on waste-glass powder.” Adv. Powder Technol. 28 (1): 215–222. https://doi.org/10.1016/j.apt.2016.09.034.
Van Riessen, A. 2007. “Thermo-mechanical and microstructural characterisation of sodium-poly (sialate-siloxo) (Na-PSS) geopolymers.” J. Mater. Sci. 42 (9): 3117–3123. https://doi.org/10.1007/s10853-006-0522-9.
Villagrán-Zaccardi, Y. A., H. Egüez-Alava, K. De Buysser, E. Gruyaert, and N. De Belie. 2017. “Calibrated quantitative thermogravimetric analysis for the determination of portlandite and calcite content in hydrated cementitious systems.” Mater. Struct. 50 (3): 1–10. https://doi.org/10.1617/s11527-017-1046-2.
Villain, G., M. Thiery, and G. Platret. 2007. “Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry.” Cem. Concr. Res. 37 (8): 1182–1192. https://doi.org/10.1016/j.cemconres.2007.04.015.
Wang, A., H. Liu, X. Hao, Y. Wang, X. Liu, and Z. Li. 2019. “Geopolymer synthesis using garnet tailings from molybdenum mines.” Minerals 9 (1): 48. https://doi.org/10.3390/min9010048.
Wang, J., P. Feng, T. Hao, and Q. Yue. 2017. “Axial compressive behavior of seawater coral aggregate concrete-filled FRP tubes.” Constr. Build. Mater. 147 (Aug): 272–285. https://doi.org/10.1016/j.conbuildmat.2017.04.169.
Wang, S., Q. Xue, Y. Zhu, G. Li, Z. Wu, and K. Zhao. 2021. “Experimental study on material ratio and strength performance of geopolymer-improved soil.” Constr. Build. Mater. 267 (Jan): 120469. https://doi.org/10.1016/j.conbuildmat.2020.120469.
Wang, W., L. Zhao, Y. Liu, and Z. Li. 2014. “Mechanical properties and stress–strain relationship in axial compression for concrete with added glazed hollow beads and construction waste.” Constr. Build. Mater. 71 (Nov): 425–434. https://doi.org/10.1016/j.conbuildmat.2014.05.005.
Wang, Y., H. Zhang, H. Lin, Y. Zhao, and Y. Liu. 2020. “Fracture behaviour of central-flawed rock plate under uniaxial compression.” Theor. Appl. Fract. Mech. 106 (Apr): 102503. https://doi.org/10.1016/j.tafmec.2020.102503.
Xia, M., F. Muhammad, L. Zeng, S. Li, X. Huang, B. Jiao, Y. Shiau, and D. Li. 2019. “Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer.” J. Cleaner Prod. 209 (Feb): 1206–1215. https://doi.org/10.1016/j.jclepro.2018.10.265.
Xiao, R., P. Polaczyk, M. Zhang, X. Jiang, Y. Zhang, B. Huang, and W. Hu. 2020. “Evaluation of glass powder-based geopolymer stabilized road bases containing recycled waste glass aggregate.” Transp. Res. Rec. 2674 (1): 22–32. https://doi.org/10.1177/0361198119898695.
Xing, Z., K. Tian, C. Du, C. Li, J. Zhou, and Z. Chen. 2019. “Agricultural soil characterization by FTIR spectroscopy at micrometer scales: Depth profiling by photoacoustic spectroscopy.” Geoderma 335 (Feb): 94–103. https://doi.org/10.1016/j.geoderma.2018.08.003.
Xue, Z. F., W. C. Cheng, and L. Wang. 2021a. “Effect of straw reinforcement on the shearing and creep behaviours of Quaternary loess.” Sci. Rep. 11 (1): 1–15. https://doi.org/10.1038/s41598-021-99318-5.
Xue, Z. F., W. C. Cheng, L. Wang, and G. Song. 2021b. “Improvement of the shearing behaviour of loess using recycled straw fiber reinforcement.” KSCE J. Civ. Eng. 25 (9): 3319–3335. https://doi.org/10.1007/s12205-021-2263-3.
Zhang, N., A. Hedayat, H. G. Bolaños, J. J. González, G. E. Salas, and V. B. Ascuña. 2021a. “Damage evaluation and deformation behavior of mine tailing-based geopolymer under uniaxial cyclic compression.” Ceram. Int. 47 (8): 10773–10785. https://doi.org/10.1016/j.ceramint.2020.12.194.
Zhang, N., A. Hedayat, H. G. Bolaños, J. J. González, G. E. Salas, and V. B. Ascuña. 2021b. “Specimen size effects on the mechanical behaviors and failure patterns of the mine tailings-based geopolymer under uniaxial compression.” Constr. Build. Mater. 281 (Apr): 122525. https://doi.org/10.1016/j.conbuildmat.2021.122525.
Zhang, N., A. Hedayat, H. G. Bolaños, J. Tunnah, J. J. González, and G. E. Salas. 2021c. “Estimation of the mode I fracture toughness and evaluations on the strain behaviors of the compacted mine tailings from full-field displacement fields via digital image correlation.” Theor. Appl. Fract. Mech. 114 (Aug): 103014. https://doi.org/10.1016/j.tafmec.2021.103014.
Zhang, N., A. Hedayat, H. G. Bolaños Sosa, J. J. González Cárdenas, G. E. Salas Álvarez, V. Ascuña Rivera, and J. González. 2020. “Fracture and failure processes of geopolymerized mine tailings under uniaxial compression.” In Proc., 54th US Rock Mechanics/Geomechanics Symp. Golden, CO: American Rock Mechanic Association.
Zhang, N., A. Hedayat, L. Figueroa, K. X. Steirer, H. Li, H. G. B. Sosa, R. P. H. Bernal, N. Tupa, I. Y. Morales, and R. S. C. Loza. 2022. “Experimental studies on the durability and leaching properties of alkali-activated tailings subjected to different environmental conditions.” Cem. Concr. Compos. 130 (Sep): 104531. https://doi.org/10.1016/j.cemconcomp.2022.104531.
Zhang, N., A. Hedayat, H. G. B. Sosa, R. P. H. Bernal, N. Tupa, I. Y. Morales, and R. S. C. Loza. 2021d. “On the incorporation of class F fly-ash to enhance the geopolymerization effects and splitting tensile strength of the gold mine tailings-based geopolymer.” Constr. Build. Mater. 308 (Nov): 125112. https://doi.org/10.1016/j.conbuildmat.2021.125112.
Zhang, N., A. Hedayat, H. G. B. Sosa, N. Tupa, I. Y. Morales, and R. S. C. Loza. 2021e. “Crack evolution in the Brazilian disks of the mine tailings-based geopolymers measured from digital image correlations: An experimental investigation considering the effects of class F fly ash additions.” Ceram. Int. 47 (22): 32382–32396. https://doi.org/10.1016/j.ceramint.2021.08.138.
Zhang, N., A. Hedayat, H. G. B. Sosa, N. Tupa, I. Y. Morales, and R. S. C. Loza. 2021f. “Fracture properties of the gold mine tailings-based geopolymer under mode I loading condition through semi-circular bend tests with digital image correlation.” Theor. Appl. Fract. Mech. 116 (Dec): 103116. https://doi.org/10.1016/j.tafmec.2021.103116.
Zhao, S., M. Xia, L. Yu, X. Huang, B. Jiao, and D. Li. 2021. “Optimization for the preparation of composite geopolymer using response surface methodology and its application in lead-zinc tailings solidification.” Constr. Build. Mater. 266 (Jan): 120969. https://doi.org/10.1016/j.conbuildmat.2020.120969.
Zhao, Y., J. Gong, and S. Zhao. 2017. “Experimental study on shrinkage of HPC containing fly ash and ground granulated blast-furnace slag.” Constr. Build. Mater. 155 (Nov): 145–153. https://doi.org/10.1016/j.conbuildmat.2017.07.020.
Zheng, W., H. Li, and Y. Wang. 2012. “Compressive stress–strain relationship of steel fiber-reinforced reactive powder concrete after exposure to elevated temperatures.” Constr. Build. Mater. 35 (Oct): 931–940. https://doi.org/10.1016/j.conbuildmat.2012.05.031.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 11November 2022

History

Received: Sep 30, 2021
Accepted: Mar 3, 2022
Published online: Aug 31, 2022
Published in print: Nov 1, 2022
Discussion open until: Jan 31, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, School of Civil Engineering, Shandong Univ., 17923 Jingshi Rd., Jinan, Shandong 250061, China; Research Associate, Dept. of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (corresponding author). ORCID: https://orcid.org/0000-0002-6207-000X. Email: [email protected]; [email protected]
Ahmadreza Hedayat, Ph.D., A.M.ASCE [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401. Email: [email protected]
Yibran Perera-Mercado, Ph.D. [email protected]
Research Scientist, Dept. of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401. Email: [email protected]
Héctor Gelber Bolaños Sosa [email protected]
Professor, College of Process Engineering, National Univ. of St Agustin, 51, Santa Catalina 117, Arequipa, Peru. Email: [email protected]
Néstor Tupa, Ph.D. [email protected]
Professor, College of Civil Engineering, National Univ. of St Agustin, 51, Santa Catalina 117, Arequipa, Peru. Email: [email protected]
Professor, College of Civil Engineering, National Univ. of St Agustin, 51, Santa Catalina 117, Arequipa, Peru. ORCID: https://orcid.org/0000-0002-4527-5353. Email: [email protected]
Reynaldo Sabino Canahua Loza [email protected]
Professor, College of Civil Engineering, National Univ. of St Agustin, 51, Santa Catalina 117, Arequipa, Peru. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • High Temperature Treatment to Improve Hydrolytic Stability of Mine Tailing-Based Geopolymer Bricks, Geo-Congress 2024, 10.1061/9780784485330.011, (96-105), (2024).
  • Multiscale Characterization at Early Ages of Ultra-High Performance Geopolymer Concrete, Polymers, 10.3390/polym14245504, 14, 24, (5504), (2022).
  • Fracture properties of tailings-based geopolymer incorporated with class F fly ash under mode I loading conditions, Engineering Fracture Mechanics, 10.1016/j.engfracmech.2022.108646, 271, (108646), (2022).
  • Experimental studies on the durability and leaching properties of alkali-activated tailings subjected to different environmental conditions, Cement and Concrete Composites, 10.1016/j.cemconcomp.2022.104531, 130, (104531), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share