Abstract

The synthesis parameters, such as alkali activator type and content and water/binder (w/b) ratio, directly affect the dissolution and geopolymerization kinetics in geopolymers, playing a major role in its flow performance over time. However, the isolated effect of each parameter on the rheology of fresh metakaolin-based geopolymer is still not completely understood. This work assessed the effect of the alkali type (Na or K), concentration (15% or 20% by weight of the activating solution), and w/b ratio (from 0.70 to 0.80) on the fresh properties of metakaolin-based geopolymers. Minislump and Marsh cone tests with the use of image analysis and dynamic strain sweep rheometry were conducted at different testing times. The results showed that a high w/b ratio increased the initial flowability of paste (reduced the yield stress and Marsh cone time, and increased the minislump) as expected, whereas the flowability was reduced over time. Increasing the alkali concentration also increased the flowability of pastes regardless of the alkali type used. The most important finding is the corroboration that the type of alkali (Na+ or K+) was the parameter that had the greatest impact on the rheological behavior of pastes: mixes produced with potassium-based activator had higher flowability compared with those produced with sodium-based activator for the same concentration, w/b ratio, and testing time. The increased yield stress reduced workability, which might negatively affect its applicability and consequently the hardened performance of the material. Therefore, if high flowability is required, the use of potassium must be considered, either through its partial or complete presence in the alkali activator.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

Authors are grateful to the Federal University of Santa Maria (UFSM), the Brazilian National Council for Scientific and Technological Development (CNPq, Research Project 309885/2020-5 and 409992/2018-6), Laboratory of Soil Physics l, Laboratório de Materiais de Construção Civil (LMCC), as well as LINCE (Laboratório de Inovação em Cimentos Ecoeficientes from UFRGS). J.G was sponsored by CAPES; G.D., E.F.M, and E.D.R. (Fellowship PQ 309885/2020-5) were sponsored by the CNPq; P.R.M. was sponsored by FAPERGS (Grant No. 21/2551-0000723-0).

References

Alonso, M. M., S. Gismera, M. T. Blanco, M. Lanzón, and F. Puertas. 2017. “Alkali-activated mortars: Workability and rheological behaviour.” Constr. Build. Mater. 145 (Aug): 576–587. https://doi.org/10.1016/j.conbuildmat.2017.04.020.
Alonso, M. M., M. Palacios, F. Puertas, A. G. De La Torre, and M. A. G. Aranda. 2007. “Influencia de la estructura de aditivos basados en policarboxilato sobre el comportamiento reológico de pastas de cemento” [Effect of polycarboxylate admixture structure on cement paste rheology]. Materiales de Construccion 57 (286): 65–81.
Associaçao Brasileira de Normas Técnicas. 1998. Concreto: Determinação Da Consistência Pelo Abatimento Do Tronco De Cone. NBR NM 67. São Paulo, Brazil: Associaçao Brasileira de Normas Técnicas.
ASTM. 2014. Standard specification for flow table for use in tests of hydraulic. ASTM C230/C230M-14. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for slump of hydraulic cement concrete. ASTM C143/C143M-15a. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test method for flow of grout for preplaced-aggregate concrete (flow cone method). ASTM C939/C939M-16a. West Conshohocken, PA: ASTM.
Autef, A., E. Joussein, A. Poulesquen, G. Gasgnier, S. Pronier, I. Sobrados, J. Sanz, and S. Rossignol. 2013. “Influence of metakaolin purities on potassium geopolymer formulation: The existence of several networks.” J. Colloid Interface Sci. 408 (1): 43–53. https://doi.org/10.1016/j.jcis.2013.07.024.
Bakharev, T., J. G. Sanjayan, and Y. B. Cheng. 2000. “Effect of admixtures on properties of alkali-activated slag concrete.” Cem. Concr. Res. 30 (9): 1367–1374. https://doi.org/10.1016/S0008-8846(00)00349-5.
Barnes, H. A. 1999. “The yield stress—A review—Everything flows?” J. Non-Newton. Fluid Mech. 81 (1–2): 133–178. https://doi.org/10.1016/S0377-0257(98)00094-9.
Barnes, H. A. 2000. Handbook of elementary rheology. Aberystwyth: Univ. of Wales.
Barnes, H. A., and Q. D. Nguyen. 2001. “Rotating vane rheometry-a review.” J. Non-Newton. Fluid Mech. 98 (1): 1–14. https://doi.org/10.1016/S0377-0257(01)00095-7.
Bentz, D. P., C. F. Ferraris, M. A. Galler, A. S. Hansen, and J. M. Guynn. 2012. “Influence of particle size distributions on yield stress and viscosity of cement-fly ash pastes.” Cem. Concr. Res. 42 (2): 404–409. https://doi.org/10.1016/j.cemconres.2011.11.006.
Bhattacharjee, R., and A. I. Laskar. 2011. “Rheology of fly-ash-based geopolymer concrete.” ACI Mater. J. 108 (5): 536–542.
Bouvet, A., E. Ghorbel, and R. Bennacer. 2010. “The mini-conical slump flow test: Analysis and numerical study.” Cem. Concr. Res. 40 (10): 1517–1523. https://doi.org/10.1016/j.cemconres.2010.06.005.
Chen, T. 2000. Rheological techniques for yield stress analysis. New Castle, DE: TA Instruments.
de Azevedo, N. H., P. R. de Matos, P. J. P. Gleize, and A. M. Betioli. 2021. “Effect of thermal treatment of SiC nanowhiskers on rheological, hydration, mechanical and microstructure properties of portland cement pastes.” Cem. Concr. Compos. 117 (Mar): 103903. https://doi.org/10.1016/j.cemconcomp.2020.103903.
de Gasperi, J., D. Holthusen, M. F. D. Howes, N. Sattler, M. A. Longhi, and E. D. Rodríguez. 2021. “Temporal dynamics of rheological properties of metakaolin-based geopolymers: Effects of synthesis parameters.” Constr. Build. Mater. 289 (Jun): 123145. https://doi.org/10.1016/j.conbuildmat.2021.123145.
de Matos, P. R., D. Jiao, F. Roberti, F. Pelisser, and P. J. P. Gleize. 2020a. “Rheological and hydration behaviour of cement pastes containing porcelain polishing residue and different water-reducing admixtures.” Constr. Build. Mater. 262 (Nov): 120850. https://doi.org/10.1016/j.conbuildmat.2020.120850.
de Matos, P. R., R. Pilar, C. A. Casagrande, P. J. P. Gleize, and F. Pelisser. 2020b. “Comparison between methods for determining the yield stress of cement pastes.” J. Braz. Soc. Mech. Sci. Eng. 42 (1): 1–13. https://doi.org/10.1007/s40430-019-2111-2.
Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. Van Deventer. 2007. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
Favier, A., G. Habert, J. B. D’Espinose De Lacaillerie, and N. Roussel. 2013. “Mechanical properties and compositional heterogeneities of fresh geopolymer pastes.” Cem. Concr. Res. 48 (Jun): 9–16. https://doi.org/10.1016/j.cemconres.2013.02.001.
Favier, A., J. Hot, G. Habert, N. Roussel, and J. B. D’Espinose De Lacaillerie. 2014. “Flow properties of MK-based geopolymer pastes. A comparative study with standard portland cement pastes.” Soft Matter 10 (8): 1134–1141. https://doi.org/10.1039/c3sm51889b.
Flatt, R. J., N. Martys, and L. Bergström. 2004. “The rheology of cementitious materials.” MRS Bull. 29 (5): 314–318. https://doi.org/10.1557/mrs2004.96.
Geng, H., W. Chen, Q. Li, Z. Shui, and B. Yuan. 2019. “Effect of pre-dispersing metakaolin in water on the properties, hydration, and metakaolin distribution in mortar.” Front. Mater. 6 (May): 1–10. https://doi.org/10.3389/fmats.2019.00099.
Guo, Y., T. Zhang, J. Wei, Q. Yu, and S. Ouyang. 2017. “Evaluating the distance between particles in fresh cement paste based on the yield stress and particle size.” Constr. Build. Mater. 142 (Jul): 109–116. https://doi.org/10.1016/j.conbuildmat.2017.03.055.
Habert, G., and C. Ouellet-Plamondon. 2016. “Recent update on the environmental impact of geopolymers.” RILEM Tech. Lett. 1 (Apr): 17–23. https://doi.org/10.21809/rilemtechlett.2016.6.
Halasta, L., P. Rovnanik, and O. Mikhailova. 2019. “Effect of geopolymer composition on the mechanical and rheological properties.” IOP Conf. Ser.: Mater. Sci. Eng. 583 (1): 012002. https://doi.org/10.1088/1757-899X/583/1/012002.
Jiang, C., A. Wang, X. Bao, T. Ni, and J. Ling. 2020. “A review on geopolymer in potential coating application: Materials, preparation and basic properties.” J. Build. Eng. 32 (Jul): 101734. https://doi.org/10.1016/j.jobe.2020.101734.
Kashani, A., J. L. Provis, G. G. Qiao, and J. S. J. Van Deventer. 2014. “The interrelationship between surface chemistry and rheology in alkali activated slag paste.” Constr. Build. Mater. 65 (Aug): 583–591. https://doi.org/10.1016/j.conbuildmat.2014.04.127.
Kuenzel, C., L. Li, L. Vandeperre, A. R. Boccaccini, and C. R. Cheeseman. 2014. “Influence of sand on the mechanical properties of metakaolin geopolymers.” Constr. Build. Mater. 66 (Sep): 442–446. https://doi.org/10.1016/j.conbuildmat.2014.05.058.
Lahlou, N., M. O. Touhami, R. Hattaf, and R. Moussa. 2019. “Towards an optimization of the formulation of geopolymers in the fresh state: Rheological approach.” Appl. Rheol. 29 (1): 94–104. https://doi.org/10.1515/arh-2019-0009.
Lee, S., B. Kim, J. Seo, and S. Cho. 2020. “Beneficial use of MIBC in metakaolin-based geopolymers to improve flowability and compressive strength.” Materials (Basel) 13 (17): 3663. https://doi.org/10.3390/ma13173663.
Longhi, M. A., E. D. Rodríguez, B. Walkley, Z. Zhang, and A. P. Kirchheim. 2020. “Metakaolin-based geopolymers: Relation between formulation, physicochemical properties and efflorescence formation.” Composites Part B 182 (Feb): 107671. https://doi.org/10.1016/j.compositesb.2019.107671.
Longhi, M. A., B. Walkley, E. D. Rodríguez, A. P. Kirchheim, Z. Zhang, and H. Wang. 2019. “New selective dissolution process to quantify reaction extent and product stability in metakaolin-based geopolymers.” Composites Part B 176 (Nov): 107172. https://doi.org/10.1016/j.compositesb.2019.107172.
Lu, C., Z. Zhang, C. Shi, N. Li, D. Jiao, and Q. Yuan. 2021. “Rheology of alkali-activated materials: A review.” Cem. Concr. Compos. 121 (Apr): 104061. https://doi.org/10.1016/j.cemconcomp.2021.104061.
Marchon, D., S. Kawashima, H. Bessaies-Bey, S. Mantellato, and S. Ng. 2018. “Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry.” Cem. Concr. Res. 112 (Dec): 96–110. https://doi.org/10.1016/j.cemconres.2018.05.014.
Mo, B., H. Zhu, X. Cui, Y. He, and S. Gong. 2014. “Effect of curing temperature on geopolymerization of metakaolin-based geopolymers.” Appl. Clay Sci. 99 (Sep): 144–148. https://doi.org/10.1016/j.clay.2014.06.024.
Nair, S. A. O., H. Alghamdi, A. Arora, I. Mehdipour, G. Sant, and N. Neithalath. 2019. “Linking fresh paste microstructure, rheology and extrusion characteristics of cementitious binders for 3D printing.” J. Am. Ceram. Soc. 102 (7): 3951–3964. https://doi.org/10.1111/jace.16305.
Nematollahi, B., and J. Sanjayan. 2014. “Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer.” Mater. Des. 57 (May): 667–672. https://doi.org/10.1016/j.matdes.2014.01.064.
Ouyang, G., J. Wang, R. Wang, L. Chen, and B. Bu. 2021. “Rheokinetics and fluidity modification of alkali activated ultrafine metakaolin based geopolymers.” Constr. Build. Mater. 269 (Feb): 121268. https://doi.org/10.1016/j.conbuildmat.2020.121268.
Palacios, M., P. F. G. Banfill, and F. Puertas. 2008. “Rheology and setting of alkali-activated slag pastes and mortars: Effect if organic admixture.” ACI Mater. J. 105 (2): 140–148.
Palacios, M., F. Puertas, P. Bowen, and Y. F. Houst. 2009. “Effect of PCs superplasticizers on the rheological properties and hydration process of slag-blended cement pastes.” J. Mater. Sci. 44 (10): 2714–2723. https://doi.org/10.1007/s10853-009-3356-4.
Palumbo, G., A. Iadicicco, F. Messina, C. Ferone, S. Campopiano, R. Cioffi, and F. Colangelo. 2017. “Characterization of early age curing and shrinkage of metakaolin-based inorganic binders with different rheological behavior by Fiber Bragg Grating Sensors.” Materials (Basel) 11 (1): 10. https://doi.org/10.3390/ma11010010.
Poulesquen, A., F. Frizon, and D. Lambertin. 2011. “Rheological behavior of alkali-activated metakaolin during geopolymerization.” J. Non-Cryst. Solids 357 (21): 3565–3571. https://doi.org/10.1016/j.jnoncrysol.2011.07.013.
Provis, J. L. 2009. “Activating solution chemistry for geopolymers.” In Geopolymers: Structure, processing, properties and industrial applications, edited by J. L. Provis and J. S. J. van Deventer, 50–66. Oxford: Woodhead Publishing.
Provis, J. L., and S. A. Bernal. 2014. “Geopolymers and related alkali-activated materials.” Annu. Rev. Mater. Res. 44 (1): 299–327. https://doi.org/10.1146/annurev-matsci-070813-113515.
Provis, J. L., P. Duxson, and J. S. J. van Deventer. 2010. “The role of particle technology in developing sustainable construction materials.” Adv. Powder Technol. 21 (1): 2–7. https://doi.org/10.1016/j.apt.2009.10.006.
Puertas, F., C. Varga, and M. M. Alonso. 2014. “Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution.” Cem. Concr. Compos. 53 (Oct): 279–288. https://doi.org/10.1016/j.cemconcomp.2014.07.012.
Pundienė, I., J. Pranckevičienė, C. Zhu, and M. Kligys. 2020. “The role of temperature and activator solution molarity on the viscosity and hard structure formation of geopolymer pastes.” Constr. Build. Mater. 272 (Feb): 121661.
Rahier, H., B. Van Mele, and J. Wastiels. 1996. “Low-temperature synthesized aluminosilicate glasses: Part II. Rheological transformations during low-temperature cure and high-temperature properties of a model compound.” J. Mater. Sci. 31 (1): 80–85. https://doi.org/10.1007/BF00355129.
Ramos, G. A., P. R. de Matos, F. Pelisser, and P. J. P. Gleize. 2020. “Effect of porcelain tile polishing residue on eco-efficient geopolymer: Rheological performance of pastes and mortars.” J. Build. Eng. 32 (Jun): 101699. https://doi.org/10.1016/j.jobe.2020.101699.
Ranjbar, N., C. Kuenzel, J. Spangenberg, and M. Mehrali. 2020. “Hardening evolution of geopolymers from setting to equilibrium: A review.” Cem. Concr. Compos. 114 (Nov): 103729. https://doi.org/10.1016/j.cemconcomp.2020.103729.
Rashidian-Dezfouli, H., and P. R. Rangaraju. 2017. “Comparison of strength and durability characteristics of a geopolymer produced from fly ash, ground glass fiber and glass powder.” Materiales de Construcción 67 (328): 136. https://doi.org/10.3989/mc.2017.05416.
Rifaai, Y., A. Yahia, A. Mostafa, S. Aggoun, and E. H. Kadri. 2019. “Rheology of fly ash-based geopolymer: Effect of NaOH concentration.” Constr. Build. Mater. 223 (Oct): 583–594. https://doi.org/10.1016/j.conbuildmat.2019.07.028.
Romagnoli, M., C. Leonelli, E. Kamse, and M. Lassinantti Gualtieri. 2012. “Rheology of geopolymer by DOE approach.” Constr. Build. Mater. 36 (Nov): 251–258. https://doi.org/10.1016/j.conbuildmat.2012.04.122.
Roussel, N., G. Ovarlez, S. Garrault, and C. Brumaud. 2012. “The origins of thixotropy of fresh cement pastes.” Cem. Concr. Res. 42 (1): 148–157. https://doi.org/10.1016/j.cemconres.2011.09.004.
Rovnaník, P., P. Rovnaníková, M. Vyšvarˇil, S. Grzeszczyk, and E. Janowska-Renkas. 2018. “Rheological properties and microstructure of binary waste red brick powder/metakaolin geopolymer.” Constr. Build. Mater. J. 188 (Nov): 924–933. https://doi.org/10.1016/j.conbuildmat.2018.08.150.
Schankoski, R. A., R. Pilar, P. R. de Matos, L. R. Prudêncio, and R. D. Ferron. 2019. “Fresh and hardened properties of self-compacting concretes produced with diabase and gneiss quarry by-product powders as alternative fillers.” Constr. Build. Mater. 224 (Nov): 659–670. https://doi.org/10.1016/j.conbuildmat.2019.07.095.
Steins, P., A. Poulesquen, O. Diat, and F. Frizon. 2012. “Structural evolution during geopolymerization from an early age to consolidated material.” Langmuir 28 (22): 8502–8510. https://doi.org/10.1021/la300868v.
Tan, Z., S. A. Bernal, and J. L. Provis. 2017. “Reproducible mini-slump test procedure for measuring the yield stress of cementitious pastes.” Mater. Struct. 50 (6): 1–12. https://doi.org/10.1617/s11527-017-1103-x.
Vail, J. G. 1952. Soluble silicates: Their properties and uses. New York: Reinhold.
Vance, K., A. Dakhane, and G. Sant. 2014. “Observations on the rheological response of alkali activated fly ash suspensions : The role of activator type and concentration.” Rheol. Acta 53 (10–11): 843–855. https://doi.org/10.1007/s00397-014-0793-z.
Yao, X., Z. Zhang, H. Zhu, and Y. Chen. 2009. “Geopolymerization process of alkali–metakaolinite characterized by isothermal calorimetry.” Thermochim. Acta 493 (1–2): 49–54. https://doi.org/10.1016/j.tca.2009.04.002.
Yuan, Q., D. Zhou, K. H. Khayat, D. Feys, and C. Shi. 2017. “On the measurement of evolution of structural build-up of cement paste with time by static yield stress test vs. small amplitude oscillatory shear test.” Cem. Concr. Res. 99 (May): 183–189. https://doi.org/10.1016/j.cemconres.2017.05.014.
Zhang, D., D. Wang, Z. Liu, and F. Xie. 2018. “Rheology, agglomerate structure, and particle shape of fresh geopolymer pastes with different NaOH activators content.” Constr. Build. Mater. 187 (Oct): 674–680. https://doi.org/10.1016/j.conbuildmat.2018.07.205.
Zhang, D.-W., D.-M. Wang, and F.-Z. Xie. 2019. “Microrheology of fresh geopolymer pastes with different NaOH amounts at room temperature.” Constr. Build. Mater. 207 (May): 284–290. https://doi.org/10.1016/j.conbuildmat.2019.02.149.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 9September 2022

History

Received: Jun 24, 2021
Accepted: Jan 5, 2022
Published online: Jun 21, 2022
Published in print: Sep 1, 2022
Discussion open until: Nov 21, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Jessica de Gasperi [email protected]
Ph.D. Student, Dept. of Structures and Civil Construction, Universidade Federal de Santa Maria, Av. Roraima 1000, Prédio 10A, Centro de Tecnologia, Santa Maria, CEP 97105-900, Brazil. Email: [email protected]
Civil Engineer, Dept. of Structures and Civil Construction, Universidade Federal de Santa Maria, Av. Roraima 1000, Prédio 10A, Centro de Tecnologia, Santa Maria, CEP 97105-900, Brazil. ORCID: https://orcid.org/0000-0003-0258-0611. Email: [email protected]
Undergraduate Student, Dept. of Structures and Civil Construction, Universidade Federal de Santa Maria, Av. Roraima 1000, Prédio 10A, Centro de Tecnologia, Santa Maria, CEP 97105-900, Brazil. ORCID: https://orcid.org/0000-0003-4548-7134. Email: [email protected]
Márlon A. Longhi, Ph.D. [email protected]
Dept. of Civil Engineering, Post-Graduate Program in Civil Engineering: Construction and infrastructure, Universidade Federal de Rio Grande do Sul, Av. Osvaldo Aranha 99, Porto Alegre, CEP 90035-190, Brazil. Email: [email protected]
Adjunct Professor, Academic Coordination, Universidade Federal de Santa Maria, Campus Cachoeira do Sul, Rodovia Taufik Germano, 3013 Passo D’Areia, Cachoeira do Sul, CEP 96503-205, Brazil. ORCID: https://orcid.org/0000-0002-3695-1356. Email: [email protected]
Adjunct Professor, Dept. of Structures and Civil Construction, Universidade Federal de Santa Maria, Av. Roraima 1000, Prédio 10A, Centro de Tecnologia, Santa Maria, CEP 97105-900, Brazil (corresponding author). ORCID: https://orcid.org/0000-0003-1914-4541. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Influência da quantidade de água na formação de eflorescência em geopolímeros a base de metacaulim, Matéria (Rio de Janeiro), 10.1590/1517-7076-rmat-2022-0120, 27, 4, (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share