Technical Papers
Mar 26, 2022

Blended Alkali-Activated Cements Based on Blast-Furnace Slag and Calcined Clays: Statistical Modeling and Effect of Amount and Chemistry of Reactive Phase

Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 6

Abstract

In this study, binary ground granulated blast-furnace slag (GGBFS)/calcined clay cements activated by 4 M NaOH and cured at ambient temperature were investigated to determine the correlation of the mechanical properties and phase-formation behavior of the mixed cements with respect to the percentage, amount, and chemistry of the reactive phases of the calcined clays. A calcined kaolinite/montmorillonite calcined clay containing 60% reactive phase was found to be suitable as a secondary precursor in blended cements. The optimal formulation of the alkali-activated GGBFS/calcined clay was 70/30, having a 28-day compressive strength of 30 MPa and corresponding to Ca/Si=0.75, Na/Si=0.16, Na/Al=0.54, and Si/Al=3.3. X-ray diffraction, thermal, and Fourier-transform infrared analyses revealed that the reaction products of the blended cements were a CN(A)SH gel, calcite, and zeolites. Experimental–statistical modeling showed that the reactive-phase parts in the calcined clays and the Na/Si oxide ratio were statistically the most responsible for the strength of the mixed alkali-activated cements.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Abdollahnejad, Z., T. Luukkonen, M. Mastali, C. Giosue, O. Favoni, M. L. Ruello, P. Kinnunen, and M. Illikainen. 2019a. “Microstructural analysis and strength development of one-part alkali-activated slag/ceramic binders under different curing regimes.” Waste Biomass Valorization 11 (6): 3081–3096. https://doi.org/10.1007/s12649-019-00626-9.
Abdollahnejad, Z., T. Luukkonen, M. Mastali, P. Kinnunen, and M. Illikainen. 2019b. “Development of one-part alkali-activated ceramic/slag binders containing recycled ceramic aggregates.” J. Mater. Civ. Eng. 31 (2): 04018386. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002608.
Bature, A. S., M. Khorami, E. Ganjian, and M. Tyrer. 2021. “Influence of alkali activator type and proportion on strength performance of calcined clay geopolymer mortar.” Constr. Build. Mater. 267 (Jan): 120446. https://doi.org/10.1016/j.conbuildmat.2020.120446.
Ben Haha, M., G. Le Saout, F. Winnefeld, and B. Lothenbach. 2011. “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags.” Cem. Concr. Res. 41 (3): 301–310. https://doi.org/10.1016/j.cemconres.2010.11.016.
Bernal, S. A., R. M. de Gutierrez, J. L. Provis, and V. Rose. 2010. “Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags.” Cem. Concr. Res. 40 (6): 898–907. https://doi.org/10.1016/j.cemconres.2010.02.003.
Bernal, S. A., J. L. Provis, R. Mej ıa de Gutierrez, and V. Rose. 2011. “Evolution of binder structure in sodium silicate activated slag-metakaolin blends.” Cem. Concr. Compos. 33 (1): 46–54. https://doi.org/10.1016/j.cemconcomp.2010.09.004.
Borges, P. H. R., N. Banthia, H. A. Alcamand, W. L. Vasconcelos, and E. H. M. Nunes. 2016. “Performance of blended metakaolin/blast furnace slag alkali-activated mortars.” Cem. Concr. Compos. 71 (8): 42–52. https://doi.org/10.1016/j.cemconcomp.2016.04.008.
Buchwald, A., R. Tatarin, and D. Stephan. 2009. “Reaction progress of alkaline-activated metakaolin-ground granulated blast furnace slag blends.” J. Mater. Sci. 44 (20): 5609–5617. https://doi.org/10.1007/s10853-009-3790-3.
Burciaga-Díaz, O., and J. I. Escalante-Garcia. 2013. “Structure, mechanisms of reaction, and strength of an alkali-activated blast-furnace slag.” J. Am. Ceram. Soc. 96 (12): 3939–3948. https://doi.org/10.1111/jace.12620.
Burciaga-Díaz, O., and J. I. Escalante-García. 2017. “Comparative performance of alkali activated slag/metakaolin cement pastes exposed to high temperatures.” Cem. Concr. Compos. 84 (Nov): 157–166. https://doi.org/10.1016/j.cemconcomp.2017.09.007.
Burciaga-Díaz, O., L. Y. Gómez-Zamorano, and J. I. Escalante-García. 2016. “Influence of the long term curing temperature on the hydration of alkaline binders of blast furnace slag-metakaolin.” Constr. Build. Mater. 113 (Jun): 917–926. https://doi.org/10.1016/j.conbuildmat.2016.03.111.
Burciaga-Díaz, O., R. X. Magallanes-Rivera, and J. I. Escalante-García. 2013. “Alkali-activated slag-metakaolin pastes: Strength, structural, and microstructural characterization.” J. Sustainable Cem.-Based Mater. 2 (2): 111–127. https://doi.org/10.1080/21650373.2013.801799.
D’Elia, A., D. Pinto, G. Eramo, L. C. Giannossa, G. Ventruti, and R. Laviano. 2018. “Effects of processing on the mineralogy and solubility of carbonate-rich clays for alkaline activation purpose: Mechanical, thermal activation in red/ox atmosphere and their combination.” Appl. Clay Sci. 152 (Feb): 9–21. https://doi.org/10.1016/j.clay.2017.11.036.
Dietel, J., L. N. Warr, M. Bertmer, A. Steudel, G. H. Grathoff, and K. Emmerich. 2017. “The importance of specific surface area in the geopolymerization of heated illitic clay.” Appl. Clay Sci. 139 (Apr): 99–107. https://doi.org/10.1016/j.clay.2017.01.001.
El-Naggar, M. R., and M. I. El-Dessouky. 2017. “Re-use of waste glass in improving properties of metakaolin-based geopolymers: Mechanical and microstructure examinations.” Constr. Build. Mater. 132 (2): 543–555. https://doi.org/10.1016/j.conbuildmat.2016.12.023.
Gado, R. A., M. Hebda, M. Łach, and J. Mikuła. 2020. “Alkali activation of waste clay bricks: Influence of the silica modulus, sio2/Na2O, H2O/Na2O molar ratio, and liquid/solid ratio.” Mater. 13 (2): 383. https://doi.org/10.3390/ma13020383.
Garcia-Lodeiro, I., N. Boudissa, A. Fernandez-Jimenez, and A. Palomo. 2018. “Use of clays in alkaline hybrid cement preparation. The role of bentonites.” Mater. Lett. 233 (Dec): 134–137. https://doi.org/10.1016/j.matlet.2018.08.098.
Garcia-Lodeiro, I., A. Palomo, A. Fernández-Jiménez, and D. E. Macphee. 2011. “Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O.” Cem. Concr. Res. 41 (9): 923–931. https://doi.org/10.1016/j.cemconres.2011.05.006.
Hanzlíček, T., I. Perná, K. Uličná, V. Římal, and H. Štěpánková. 2020. “The evaluation of clay suitability for geopolymer technology.” Minerals 10 (10): 852. https://doi.org/10.3390/min10100852.
Hasnaoui, A., E. Ghorbel, and G. Wardeh. 2019. “Optimization approach of granulated blast furnace slag and metakaolin based geopolymer mortars.” Constr. Build. Mater. 198 (Feb): 10–26. https://doi.org/10.1016/j.conbuildmat.2018.11.251.
Hidalgo, A., C. Domingo, C. Garcia, S. Petit, C. Andrade, and C. Alonso. 2008. “Microstructural changes induced in Portland cement-based materials due to natural and supercritical carbonation.” J. Mater. Sci. 43 (9): 3101–3111. https://doi.org/10.1007/s10853-008-2521-5.
Juenger, M. C. G., R. Snellings, and S. A. Bernal. 2019. “Supplementary cementitious materials: New sources, characterization, and performance insights.” Cem. Concr. Res. 122 (Aug): 257–273. https://doi.org/10.1016/j.cemconres.2019.05.008.
Karge, H. G. 2001. “Characterization by IR spectroscopy in: Verified synthesis of zeolite materials.” In Verified syntheses of zeolitic materials, edited by H. Robson, 2nd ed., 69–71. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B978-044450703-7/50113-7.
Keppert, M., et al. 2018. “Red-clay ceramic powders as geopolymer precursors: Consideration of amorphous portion and CaO content.” Appl. Clay Sci. 161 (Sep): 82–89. https://doi.org/10.1016/j.clay.2018.04.019.
Khalifa, A. Z., Ö. Cizer, Y. Pontikes, A. Heath, P. Patureau, S. A. Bernal, and A. T. M. Marsh. 2020. “Advances in alkali-activation of clay minerals.” Cem. Concr. Res. 132 (6): 106050. https://doi.org/10.1016/j.cemconres.2020.106050.
Latella, B. A., D. S. Perera, D. Durce, E. G. Mehrtens, and J. Davis. 2008. “Mechanical properties of metakaolin-based geopolymers with molar ratios of Si/Al≈2 and Na/Al≈1.” J. Mater. Sci. 43 (8): 2693–2699. https://doi.org/10.1007/s10853-007-2412-1.
Lecomte, I., M. Liegeois, A. Rulmont, R. Cloots, and F. Maseri. 2003. “Synthesis and characterization of new inorganicpolymeric composites based on kaolin or white clay and on ground-granulated blast furnace slag.” J. Mater. Res. 18 (11): 2571–2579. https://doi.org/10.1557/JMR.2003.0360.
Liu, J., C. Yi, H. Zhu, and H. Ma. 2019. “Property comparison of alkali-activated carbon steel slag (CSS) and stainless steel slag (SSS) and role of blast furnace slag (BFS) chemical composition.” Materials 12 (20): 3307. https://doi.org/10.3390/ma12203307.
Longhi, M. A., E. D. Rodríguez, B. Walkley, Z. Zhang, and A. P. Kirchheim. 2019. “Metakaolin-based geopolymers: Relation between formulation, physicochemical properties and efflorescence formation.” Composites, Part B 182 (Feb): 107671. https://doi.org/10.1016/j.compositesb.2019.107671.
Lutskin, E., and E. Shinkevich. 2015. “Analysis of the relationship between microstructure and properties of activated lime-silica composites on the basis of experimentally-statistical modelling.” Technol. J. 9 (1): 27.
Lyashenko, T., and V. Voznesensky. 2017. Composition-process fields methodology in computational building materials science. [In Russian.] Odessa: Astroprin.
Mehta, A., and R. Siddique. 2016. “An overview of geopolymers derived from industrial by-products.” Constr. Build. Mater. 127 (11): 183–198. https://doi.org/10.1016/j.conbuildmat.2016.09.136.
Myers, R. J., S. A. Bernal, R. San Nicolas, and J. L. Provis. 2013. “Generalized structural description of calcium-sodium aluminosilicate hydrate gel: The cross-linked substituted tobermorite model.” Langmuir 29 (17): 5294–5306. https://doi.org/10.1021/la4000473.
Pacheco-Torgal, F., J. Labrincha, C. Leonelli, A. Palomo, and P. Chindaprasit. 2014. Handbook of alkali-activated cements, mortars and concretes. Amsterdam, Netherlands: Elsevier.
Paradal, X., F. Brunet, T. Charpentier, I. Pochard, and A. Nonat. 2012. “27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate.” Inorg. Chem. 5 (3): 1827–1836. https://doi.org/10.1021/ic202124x.
Perna, I., and T. Hanzlıcek. 2016. “The setting time of a clay-slag geopolymer matrix: The influence of blast-furnace slag addition and the mixing method.” J. Cleaner Prod. 112 (Jan): 1150–1155. https://doi.org/10.1016/j.jclepro.2015.05.069.
Provis, J. L., R. J. Myers, C. E. White, V. Rose, and J. S. J. van Deventer. 2012. “X-ray microtomography shows pore structure and tortuosity in alkali-activated binders.” Cem. Concr. Res. 42 (6): 855–864. https://doi.org/10.1016/j.cemconres.2012.03.004.
Provis, J. L., and J. S. J. van Deventer. 2009. Geopolymers: Structure, processing, properties and industrial applications. Cambridge, UK: Woodhead.
Provis, J. L., and J. S. J. van Deventer. 2014. Alkali activated materials: State-of-the-art report. New York: Springer.
Puertas, F., and A. Fernandez-Jimenez. 2003. “Mineralogical and microstructural characterization of alkali-activated fly ash/slag pastes.” Cem. Concr. Compos. 25 (3): 287–292. https://doi.org/10.1016/S0958-9465(02)00059-8.
Puertas, F., M. Palacios, H. Manzano, J. S. Dolado, A. Rico, and J. Rodríguez. 2011. “A model for C-A-S-H gel formed in alkali activated slag cements.” J. Eur. Ceram. Soc. 31 (12): 2043–2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036.
Rakhimova, N. R. 2020. “Recent advances in blended alkali-activated cements: A review.” Eur. J. Environ. Civ. Eng. 1–23. https://doi.org/10.1080/19648189.2020.1858170.
Rakhimova, N. R., and R. Z. Rakhimov. 2015. “Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste.” Mater. Des. 85 (11): 324–331. https://doi.org/10.1016/j.matdes.2015.06.182.
Rakhimova, N. R., and R. Z. Rakhimov. 2018. “Reaction products, structure and properties of alkali-activated metakaolin cements incorporated with supplementary materials–A review.” J. Mater. Res. Technol. 8 (1): 1522–1531. https://doi.org/10.1016/j.jmrt.2018.07.006.
Rakhimova, N. R., R. Z. Rakhimov, Y. N. Osin, N. I. Naumkina, A. M. Gubaidullina, G. I. Yakovlev, and A. V. Shaybadullina. 2015. “Solidification of nitrate solutions with alkali-activated slag and slag–metakaolin cements.” J. Nucl. Mater. 457 (2): 186–195. https://doi.org/10.1016/j.jnucmat.2014.11.068.
Rashad, A. M., and G. M. F. Essa. 2020. “Effect of ceramic waste powder on alkali-activated slag pastes cured in hot weather after exposure to elevated temperature.” Cem. Concr. Compos. 111 (Aug): 103617. https://doi.org/10.1016/j.cemconcomp.2020.103.
Rieger, D., T. Kovářík, J. Říha, R. Medlín, P. Novotný, P. Bělský, and P. Holba. 2015. “Effect of thermal treatment on reactivity and mechanical properties of alkali activated shale–slag binder.” Constr. Build. Mater. 83 (May): 26–33. https://doi.org/10.1016/j.conbuildmat.2015.02.024.
Ruiz-Santaquiteria, C., A. Fernández-Jiménez, J. Skibsted, and A. Palomo. 2013. “Clay reactivity: Production of alkali activated cements.” Appl. Clay Sci. 73 (Mar): 11–16. https://doi.org/10.1016/j.clay.2012.10.012.
Samson, G., M. Cyr, and X. Gao. 2017. “Thermomechanical performance of blended metakaolin-GGBFS alkali-activated foam concrete.” Constr. Build. Mater. 157 (12): 982–993. https://doi.org/10.1016/j.conbuildmat.2017.09.146.
Saravanapavan, P., and L. Hench. 2003. “Mesoporous calcium silicate glasses I. Synthesis.” J. Non-Cryst. Solids 318 (1–2): 1–13. https://doi.org/10.1016/S0022-3093(02)01864-1.
Scrivener, K., F. Martirena, S. Bishnoi, and S. Maity. 2018. “Calcined clay limestone cements (LC3).” Cem. Concr. Res. 114 (Dec): 49–56. https://doi.org/10.1016/j.cemconres.2017.08.017.
Stubican, V., and R. Roy. 1961. “Infrared spectra of layer structure silicate.” J. Am. Ceram. Soc. 44 (12): 625–627. https://doi.org/10.1111/j.1151-2916.1961.tb11670.x.
Tahmasebi Yamchelou, M., D. Law, R. Brkljača, C. Gunasekara, J. Li, and I. Patnaikuni. 2020. “Geopolymer synthesis using low-grade clays.” Constr. Build. Mater. 268 (Jan): 121066. https://doi.org/10.1016/j.conbuildmat.2020.121066.
Voznesenskii, V. A., T. V. Lyashenko, P. I. Ivanov, P. Ya, and I. I. Nikolov. 1989. Computer and optimization of compositional materials. [In Russian.] Kiev: Budivelnik.
Xie, J., W. Chen, J. Wang, C. Fang, B. Zhang, and F. Liu. 2019. “Coupling effects of recycled aggregate and GGBS/metakaolin on physicochemical properties of geopolymer concrete.” Constr. Build. Mater. 226 (Nov): 345–359. https://doi.org/10.1016/j.conbuildmat.2019.07.311.
Xue, L., Z. Zhang, and H. Wang. 2021. “Hydration mechanisms and durability of hybrid alkaline cements (HACs): A review.” Constr. Build. Mater. 266 (1): 121039. https://doi.org/10.1016/j.conbuildmat.2020.121039.
Yip, C. K., G. C. Lukey, and J. S. J. van Deventer. 2005. “The coexistence of geopolymeric gel and calcium silicate hydrate of alkaline activation.” Cem. Concr. Res. 35 (9): 1688–1697. https://doi.org/10.1016/j.cemconres.2004.10.042.
Zhang, Y., W. Sun, Q. Chen, and L. Chen. 2007. “Synthesis and heavy metal immobilization behaviors of slag based geopolymer.” J. Hazard. Mater. 143 (1–2): 206–213. https://doi.org/10.1016/j.jhazmat.2006.09.033.
Zhu, H., G. Liang, H. Li, Q. Wu, C. Zhang, Z. Yin, and S. Hua. 2021. “Insights to the sulfate resistance and microstructures of alkali-activated metakaolin/slag pastes.” Appl. Clay Sci. 202 (3): 105968. https://doi.org/10.1016/j.clay.2020.105968.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 6June 2022

History

Received: May 25, 2021
Accepted: Oct 21, 2021
Published online: Mar 26, 2022
Published in print: Jun 1, 2022
Discussion open until: Aug 26, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Dept. of Building Materials, Kazan State Univ. of Architecture and Engineering, 1 Zelenaya St., Kazan 420043, Russian Federation (corresponding author). ORCID: https://orcid.org/0000-0003-1735-1758. Email: [email protected]
Vladimir P. Morozov [email protected]
Professor and Head, Dept. of Mineralogy and Lithology, Kazan Federal Univ., 18 Kremlyovskaya St., Kazan 420008, Russian Federation. Email: [email protected]
Aleksey A. Eskin [email protected]
Assistant Professor, Dept. of Mineralogy and Lithology, Kazan Federal Univ., 18 Kremlyovskaya St., Kazan 420008, Russian Federation. Email: [email protected]
Yevgen S. Lutskin [email protected]
Assistant Professor, Dept. of Process and Equipment in Building Materials Technology, Odessa State Academy of Civil Engineering and Architecture, 4 Didrikhson St., Odessa 65029, Ukraine. Email: [email protected]
Olena S. Shynkevych [email protected]
Professor, Dept. of Process and Equipment in Building Materials Technology, Odessa State Academy of Civil Engineering and Architecture, 4 Didrikhson St., Odessa 65029, Ukraine. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share