Abstract

Despite the ubiquity of porous materials, their mechanical behaviors (e.g., fracture) remain only partially understood. Here, we propose a novel analytical stochastic micromechanical damage model to describe the fracture of porous materials subjected to uniaxial tension. This analytical model relies on parallel elastic and plastic elements to describe the nonlinear stress–strain curve of porous phases. We then develop a stochastic damage model to describe the propagation of randomly scattered voids or microflaws. This model allows us to identify the key influential features that govern the failure of porous materials. Finally, we demonstrate the accuracy of our model by validating its outcomes by a series of peridynamic simulations.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author, Mathieu Bauchy, upon reasonable request.

Acknowledgments

This work was supported by the Division of Civil, Mechanical and Manufacturing Innovation (US) (under Grant Nos. DMREF-1922167, CMMI-1762292, CMMI-1826420, and CMMI-1826050), the National Science Foundation of China (under Grant Nos. 41972272 and 41772281), and the China Scholarship Council (under Grant No. 201906260195).

References

Agwai, A., I. Guven, and E. Madenci. 2011. “Predicting crack propagation with peridynamics: A comparative study.” Int. J. Fract. 171 (1): 65. https://doi.org/10.1007/s10704-011-9628-4.
Amran, Y. H. M., N. Farzadnia, and A. A. Abang Ali. 2015. “Properties and applications of foamed concrete; a review.” Constr. Build. Mater. 101 (Dec): 990–1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112.
Arson, C., and J.-M. Pereira. 2013. “Influence of damage on pore size distribution and permeability of rocks.” Int. J. Numer. Anal. Methods Geomech. 37 (8): 810–831. https://doi.org/10.1002/nag.1123.
Bauchy, M., H. Laubie, M. J. Abdolhosseini Qomi, C. G. Hoover, F.-J. Ulm, and R. J.-M. Pellenq. 2015. “Fracture toughness of calcium–silicate–hydrate from molecular dynamics simulations.” J. Non-Cryst. Solids 419 (Jul): 58–64. https://doi.org/10.1016/j.jnoncrysol.2015.03.031.
Bazazzadeh, S., F. Mossaiby, and A. Shojaei. 2020. “An adaptive thermo-mechanical peridynamic model for fracture analysis in ceramics.” Eng. Fract. Mech. 223 (Jan): 106708. https://doi.org/10.1016/j.engfracmech.2019.106708.
Behzadinasab, M., and J. T. Foster. 2020. “A semi-Lagrangian constitutive correspondence framework for peridynamics.” J. Mech. Phys. Solids 137 (Apr): 103862. https://doi.org/10.1016/j.jmps.2019.103862.
Chen, Y., H. Yang, and Y. Luo. 2016. “Parameter sensitivity analysis of indirect evaporative cooler (IEC) with condensation from primary air.” Energy Procedia 88 (Jun): 498–504. https://doi.org/10.1016/j.egypro.2016.06.069.
Chen, Z., S. Niazi, and F. Bobaru. 2019. “A peridynamic model for brittle damage and fracture in porous materials.” Int. J. Rock Mech. Min. Sci. 122 (Oct): 104059. https://doi.org/10.1016/j.ijrmms.2019.104059.
Chung, S.-Y., C. Lehmann, M. Abd Elrahman, and D. Stephan. 2017. “Pore characteristics and their effects on the material properties of foamed concrete evaluated using micro-CT images and numerical approaches.” Appl. Sci. 7 (6): 550. https://doi.org/10.3390/app7060550.
Constantinides, G., and F.-J. Ulm. 2004. “The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling.” Cem. Concr. Res. 34 (1): 67–80. https://doi.org/10.1016/S0008-8846(03)00230-8.
Dong, H., P. Gao, and G. Ye. 2017. “Characterization and comparison of capillary pore structures of digital cement pastes.” Mater. Struct. 50 (2): 154. https://doi.org/10.1617/s11527-017-1023-9.
Fakhimi, A., and E. Alavi Gharahbagh. 2011. “Discrete element analysis of the effect of pore size and pore distribution on the mechanical behavior of rock.” Int. J. Rock Mech. Min. Sci. 48 (1): 77–85. https://doi.org/10.1016/j.ijrmms.2010.08.007.
Falliano, D., D. De Domenico, G. Ricciardi, and E. Gugliandolo. 2018. “Experimental investigation on the compressive strength of foamed concrete: Effect of curing conditions, cement type, foaming agent and dry density.” Constr. Build. Mater. 165 (Mar): 735–749. https://doi.org/10.1016/j.conbuildmat.2017.12.241.
Faria, R., J. Oliver, and M. Cervera. 1998. “A strain-based plastic viscous-damage model for massive concrete structures.” Int. J. Solids Struct. 35 (14): 1533–1558. https://doi.org/10.1016/S0020-7683(97)00119-4.
Ferretti, D., E. Michelini, and G. Rosati. 2015. “Cracking in autoclaved aerated concrete: Experimental investigation and XFEM modeling.” Cem. Concr. Res. 67 (Jan): 156–167. https://doi.org/10.1016/j.cemconres.2014.09.005.
Freund, L. B. 1990. Dynamic fracture mechanics. Cambridge monographs on mechanics. Cambridge, UK: Cambridge University Press.
Frey, H. C., and S. R. Patil. 2002. “Identification and review of sensitivity analysis methods.” Risk Anal. 22 (3): 553–578. https://doi.org/10.1111/0272-4332.00039.
Hamad, A. J. 2014. “Materials, production, properties and application of aerated lightweight concrete: Review.” Int. J. Mater. Sci. Eng. 2 (2): 152–157. https://doi.org/10.12720/ijmse.2.2.152-157.
He, W., Y.-F. Wu, Y. Xu, and T.-T. Fu. 2015. “A thermodynamically consistent nonlocal damage model for concrete materials with unilateral effects.” Comput. Methods Appl. Mech. Eng. 297 (Dec): 371–391. https://doi.org/10.1016/j.cma.2015.09.010.
Hilal, A. A., N. H. Thom, and A. R. Dawson. 2015. “On void structure and strength of foamed concrete made without/with additives.” Constr. Build. Mater. 85 (Jun): 157–164. https://doi.org/10.1016/j.conbuildmat.2015.03.093.
Hoover, C. G., and F.-J. Ulm. 2015. “Experimental chemo-mechanics of early-age fracture properties of cement paste.” Cem. Concr. Res. 75 (Sep): 42–52. https://doi.org/10.1016/j.cemconres.2015.04.004.
Hou, D., D. Li, P. Hua, J. Jiang, and G. Zhang. 2019. “Statistical modelling of compressive strength controlled by porosity and pore size distribution for cementitious materials.” Cem. Concr. Compos. 96 (Feb): 11–20. https://doi.org/10.1016/j.cemconcomp.2018.10.012.
Huang, J., Q. Su, W. Zhao, T. Li, and X. Zhang. 2017. “Experimental study on use of lightweight foam concrete as subgrade bed filler of ballastless track.” Constr. Build. Mater. 149 (Sep): 911–920. https://doi.org/10.1016/j.conbuildmat.2017.04.122.
Huang, Y., Z. Yang, W. Ren, G. Liu, and C. Zhang. 2015. “3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model.” Int. J. Solids Struct. 67–68 (Aug): 340–352. https://doi.org/10.1016/j.ijsolstr.2015.05.002.
Ju, J. W. 1989. “On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects.” Int. J. Solids Struct. 25 (7): 803–833. https://doi.org/10.1016/0020-7683(89)90015-2.
Kandarpa, S., D. J. Kirkner, and B. F. Spencer. 1996. “Stochastic damage model for brittle materials subjected to monotonic loading.” J. Eng. Mech. 122 (8): 788–795. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(788).
Katiyar, A., S. Agrawal, H. Ouchi, P. Seleson, J. T. Foster, and M. M. Sharma. 2020. “A general peridynamics model for multiphase transport of non-Newtonian compressible fluids in porous media.” J. Comput. Phys. 402 (Feb): 109075. https://doi.org/10.1016/j.jcp.2019.109075.
Kearsley, E. P., and P. J. Wainwright. 2001. “The effect of high fly ash content on the compressive strength of foamed concrete.” Cem. Concr. Res. 31 (1): 105–112. https://doi.org/10.1016/S0008-8846(00)00430-0.
Kilic, B., A. Agwai, and E. Madenci. 2009. “Peridynamic theory for progressive damage prediction in center-cracked composite laminates.” Compos. Struct. 90 (2): 141–151. https://doi.org/10.1016/j.compstruct.2009.02.015.
Kozlowski, M., M. Kadela, and M. Gwozdz-Lason. 2016. “Numerical fracture analysis of foamed concrete beam using XFEM method.” Appl. Mech. Mater. 837 (Jun): 183–186. https://doi.org/10.4028/www.scientific.net/AMM.837.183.
Kuna, L., J. Mangeri, E. P. Gorzkowski, J. A. Wollmershauser, and S. Nakhmanson. 2020. “Mesoscale modeling of light transmission modulation in ceramics.” Acta Mater. 193 (Jul): 261–269. https://doi.org/10.1016/j.actamat.2020.03.040.
Li, J., and X. Ren. 2009. “Stochastic damage model for concrete based on energy equivalent strain.” Int. J. Solids Struct. 46 (11): 2407–2419. https://doi.org/10.1016/j.ijsolstr.2009.01.024.
Li, W., and L. Guo. 2020. “A mechanical-diffusive peridynamics coupling model for meso-scale simulation of chloride penetration in concrete under loadings.” Constr. Build. Mater. 241 (Apr): 118021. https://doi.org/10.1016/j.conbuildmat.2020.118021.
Liu, D.-M. 1997. “Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramic.” Ceram. Int. 23 (2): 135–139. https://doi.org/10.1016/S0272-8842(96)00009-0.
Liu, Z., Y. Bie, Z. Cui, and X. Cui. 2020. “Ordinary state-based peridynamics for nonlinear hardening plastic materials’ deformation and its fracture process.” Eng. Fract. Mech. 223 (Jan): 106782. https://doi.org/10.1016/j.engfracmech.2019.106782.
Lu, Y. L., D. Elsworth, and L. G. Wang. 2013. “Microcrack-based coupled damage and flow modeling of fracturing evolution in permeable brittle rocks.” Comput. Geotech. 49 (Apr): 226–244. https://doi.org/10.1016/j.compgeo.2012.11.009.
Madenci, E., and E. Oterkus. 2014. “Peridynamic theory.” In Peridynamic theory and its applications, edited by E. Madenci and E. Oterkus, 19–43. New York: Springer.
Maiti, S., K. Rangaswamy, and P. H. Geubelle. 2005. “Mesoscale analysis of dynamic fragmentation of ceramics under tension.” Acta Mater. 53 (3): 823–834. https://doi.org/10.1016/j.actamat.2004.10.034.
Mitts, C., S. Naboulsi, C. Przybyla, and E. Madenci. 2020. “Axisymmetric peridynamic analysis of crack deflection in a single strand ceramic matrix composite.” Eng. Fract. Mech. 235 (Aug): 107074. https://doi.org/10.1016/j.engfracmech.2020.107074.
Mugahed Amran, Y. H., A. A. Abang Ali, R. S. M. Rashid, F. Hejazi, and N. A. Safiee. 2016. “Structural behavior of axially loaded precast foamed concrete sandwich panels.” Constr. Build. Mater. 107 (Mar): 307–320. https://doi.org/10.1016/j.conbuildmat.2016.01.020.
Mydin, M. A. O., and Y. C. Wang. 2012. “Mechanical properties of foamed concrete exposed to high temperatures.” Constr. Build. Mater. 26 (1): 638–654. https://doi.org/10.1016/j.conbuildmat.2011.06.067.
Nambiar, E. K. K., and K. Ramamurthy. 2007. “Air-void characterisation of foam concrete.” Cem. Concr. Res. 37 (2): 221–230. https://doi.org/10.1016/j.cemconres.2006.10.009.
Nguyen, T., A. Ghazlan, A. Kashani, S. Bordas, and T. Ngo. 2018. “3D meso-scale modelling of foamed concrete based on X-ray computed tomography.” Constr. Build. Mater. 188 (Nov): 583–598. https://doi.org/10.1016/j.conbuildmat.2018.08.085.
Nguyen, T. T., H. H. Bui, T. D. Ngo, and G. D. Nguyen. 2017. “Experimental and numerical investigation of influence of air-voids on the compressive behaviour of foamed concrete.” Mater. Des. 130 (Sep): 103–119. https://doi.org/10.1016/j.matdes.2017.05.054.
Nguyen, T. T., H. H. Bui, T. D. Ngo, G. D. Nguyen, M. U. Kreher, and F. Darve. 2019. “A micromechanical investigation for the effects of pore size and its distribution on geopolymer foam concrete under uniaxial compression.” Eng. Fract. Mech. 209 (Mar): 228–244. https://doi.org/10.1016/j.engfracmech.2019.01.033.
Nikonam, M. R., M. D. Pugh, and R. A. L. Drew. 2020. “Pore structure, porosity and compressive strength of highly porous reaction-bonded silicon nitride ceramics with various grain morphologies.” J. Mater. Sci. 55 (2): 509–523. https://doi.org/10.1007/s10853-019-04078-3.
Ozaki, S., Y. Aoki, T. Osada, K. Takeo, and W. Nakao. 2018. “Finite element analysis of fracture statistics of ceramics: Effects of grain size and pore size distributions.” J. Am. Ceram. Soc. 101 (7): 3191–3204. https://doi.org/10.1111/jace.15468.
Rabczuk, T., and H. Ren. 2017. “A peridynamics formulation for quasi-static fracture and contact in rock.” Eng. Geol. 225 (Jul): 42–48. https://doi.org/10.1016/j.enggeo.2017.05.001.
Rabotnov, Y. N. 1969. “Creep rupture.” In Applied mechanics: International union of theoretical and applied mechanics, edited by M. Hetényi and W. G. Vincenti, 342–349. Berlin: Springer.
Rezanezhad, M., S. A. Lajevardi, and S. Karimpouli. 2019. “Effects of pore-crack relative location on crack propagation in porous media using XFEM method.” Theor. Appl. Fract. Mech. 103 (Oct): 102241. https://doi.org/10.1016/j.tafmec.2019.102241.
Sadowski, T., and S. Samborski. 2003. “Modeling of porous ceramics response to compressive loading.” J. Am. Ceram. Soc. 86 (12): 2218–2221. https://doi.org/10.1111/j.1151-2916.2003.tb03637.x.
Silling, S. A. 2000. “Reformulation of elasticity theory for discontinuities and long-range forces.” J. Mech. Phys. Solids 48 (1): 175–209. https://doi.org/10.1016/S0022-5096(99)00029-0.
Silling, S. A., and E. Askari. 2005. “A meshfree method based on the peridynamic model of solid mechanics.” Comput. Struct. 83 (17): 1526–1535. https://doi.org/10.1016/j.compstruc.2004.11.026.
Silling, S. A., M. Epton, O. Weckner, J. Xu, and E. Askari. 2007. “Peridynamic states and constitutive modeling.” J. Elast. 88 (2): 151–184. https://doi.org/10.1007/s10659-007-9125-1.
Sun, P. P., F. Y. Peng, S. Yuan, R. Yan, and Z. Min. 2014. “Sensitivity analysis of tool axis errors in large mill-turn machine tools.” Appl. Mech. Mater. 487 (Jan): 337–342. https://doi.org/10.4028/www.scientific.net/AMM.487.337.
Tang, L., N. M. A. Krishnan, J. Berjikian, J. Rivera, M. M. Smedskjaer, J. C. Mauro, W. Zhou, and M. Bauchy. 2018. “Effect of nanoscale phase separation on the fracture behavior of glasses: Toward tough, yet transparent glasses.” Phys. Rev. Mater. 2 (11): 113602. https://doi.org/10.1103/PhysRevMaterials.2.113602.
Tikalsky, P. J., J. Pospisil, and W. MacDonald. 2004. “A method for assessment of the freeze–thaw resistance of preformed foam cellular concrete.” Cem. Concr. Res. 34 (5): 889–893. https://doi.org/10.1016/j.cemconres.2003.11.005.
Unger, J. F., S. Eckardt, and C. Könke. 2007. “Modelling of cohesive crack growth in concrete structures with the extended finite element method.” Comput. Methods Appl. Mech. Eng. 196 (41): 4087–4100. https://doi.org/10.1016/j.cma.2007.03.023.
van Mier, J. G. M., and M. R. A. van Vliet. 2002. “Uniaxial tension test for the determination of fracture parameters of concrete: State of the art.” Eng. Fract. Mech. 69 (2): 235–247. https://doi.org/10.1016/S0013-7944(01)00087-X.
Wang, X., M. Zhang, and A. P. Jivkov. 2016. “Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete.” Int. J. Solids Struct. 80 (Feb): 310–333. https://doi.org/10.1016/j.ijsolstr.2015.11.018.
Wei, S., C. Yiqiang, Z. Yunsheng, and M. R. Jones. 2013. “Characterization and simulation of microstructure and thermal properties of foamed concrete.” Constr. Build. Mater. 47 (Oct): 1278–1291. https://doi.org/10.1016/j.conbuildmat.2013.06.027.
Wu, J. Y., J. Li, and R. Faria. 2006. “An energy release rate-based plastic-damage model for concrete.” Int. J. Solids Struct. 43 (3): 583–612. https://doi.org/10.1016/j.ijsolstr.2005.05.038.
Yaghoobi, A., M. G. Chorzepa, and S. S. Kim. 2017. “Mesoscale fracture analysis of multiphase cementitious composites using peridynamics.” Materials 10 (2): 162. https://doi.org/10.3390/ma10020162.
Yang, K.-H., K.-H. Lee, J.-K. Song, and M.-H. Gong. 2014. “Properties and sustainability of alkali-activated slag foamed concrete.” J. Cleaner Prod. 68 (Apr): 226–233. https://doi.org/10.1016/j.jclepro.2013.12.068.
Youssef, M. B., F. Lavergne, K. Sab, K. Miled, and J. Neji. 2018. “Upscaling the elastic stiffness of foam concrete as a three-phase composite material.” Cem. Concr. Res. 110 (Aug): 13–23. https://doi.org/10.1016/j.cemconres.2018.04.021.
Yu, X. G., S. S. Luo, Y. N. Gao, H. F. Wang, Y. X. Li, Y. R. Wei, and X. J. Wang. 2011. “Pore structure and microstructure of foam concrete.” Adv. Mater. Res. 177 (Dec): 530–532. https://doi.org/10.4028/www.scientific.net/AMR.177.530.
Yue-Dong, W., and L. Jian. 2011. “Research on foamed cement banking for nonuniform differential settlement in used super highway.” In Proc., 2011 Int. Conf. on Electric Technology and Civil Engineering (ICETCE). New York: IEEE.
Zhang, M., and A. P. Jivkov. 2014. “Microstructure-informed modelling of damage evolution in cement paste.” Constr. Build. Mater. 66 (Sep): 731–742. https://doi.org/10.1016/j.conbuildmat.2014.06.017.
Zhang, X., W. Huo, J. Liu, Y. Zhang, S. Zhang, and J. Yang. 2020. “3D printing boehmite gel foams into lightweight porous ceramics with hierarchical pore structure.” J. Eur. Ceram. Soc. 40 (3): 930–934. https://doi.org/10.1016/j.jeurceramsoc.2019.10.032.
Zhao, X., Q. Li, and S. Xu. 2020. “Contribution of steel fiber on the dynamic tensile properties of hybrid fiber ultra high toughness cementitious composites using Brazilian test.” Constr. Build. Mater. 246 (Jun): 118416. https://doi.org/10.1016/j.conbuildmat.2020.118416.
Zhou, X.-P., Y.-T. Wang, and Y.-D. Shou. 2020. “Hydromechanical bond-based peridynamic model for pressurized and fluid-driven fracturing processes in fissured porous rocks.” Int. J. Rock Mech. Min. Sci. 132 (Aug): 104383. https://doi.org/10.1016/j.ijrmms.2020.104383.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 4April 2022

History

Received: Mar 1, 2021
Accepted: Aug 13, 2021
Published online: Jan 20, 2022
Published in print: Apr 1, 2022
Discussion open until: Jun 20, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Fengrui Rao [email protected]
Ph.D. Candidate, Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Dept. of Geotechnical Engineering, Tongji Univ., Shanghai 200092, China; Physics of AmoRphous and Inorganic Solids Laboratory, Dept. of Civil and Environmental Engineering, Univ. of California, Los Angeles, CA 90095. Email: [email protected]
Physics of AmoRphous and Inorganic Solids Laboratory, Dept. of Civil and Environmental Engineering, Univ. of California, Los Angeles, CA 90095. ORCID: https://orcid.org/0000-0001-7809-8720. Email: [email protected]
Ph.D. Candidate, Physics of AmoRphous and Inorganic Solids Laboratory, Dept. of Civil and Environmental Engineering, Univ. of California, Los Angeles, CA 90095. Email: [email protected]
Professor, Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Dept. of Geotechnical Engineering, Tongji Univ., Shanghai 200092, China. Email: [email protected]
Christian Hoover [email protected]
Assistant Professor, School of Sustainable Engineering and the Built Environment, Arizona State Univ., Tempe, AZ 85287. Email: [email protected]
Associate Professor, Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Dept. of Geotechnical Engineering, Tongji Univ., Shanghai 200092, China. Email: [email protected]
Associate Professor, Physics of AmoRphous and Inorganic Solids Laboratory, Dept. of Civil and Environmental Engineering, Univ. of California, Los Angeles, CA 90095 (corresponding author). ORCID: https://orcid.org/0000-0003-4600-0631. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share