Technical Papers
Nov 25, 2021

Evaluating the Rheological Performance of Bituminous Binder Containing Nano Al2O3

Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 2

Abstract

The study reported herein investigates the effectiveness of nano aluminum trioxide (Al2O3) as a bituminous binder modifier. The study assesses the high- and intermediate-temperature performance of bituminous binders modified with three different percentages (0.5%, 1%, and 2%) of nano Al2O3. A field emission scanning electron microscope was utilized to study the dispersion of nano Al2O3 in bituminous binder. Fourier transform infrared spectroscopy analysis was used to understand the nature of the interaction between nano Al2O3 particles and bituminous binder. Different rheological approaches, like the Superpave rutting parameter, multiple stress creep and recovery test, and time-temperature sweep, were used to study the high-temperature performance of nano Al2O3–modified bituminous binders. All the methods undertaken in the current study to evaluate rutting susceptibility showed that nano Al2O3 showed modified binders had a very low propensity to accumulate permanent deformation. Fatigue performance evaluated using the Linear Amplitude Sweep test showed that the incorporation of nano Al2O3 enhanced fatigue performance. Nano Al2O3–modified bituminous binders were found to be storage stable as revealed by the storage stability test. The high-temperature thermal stability of the bituminous binders measured using thermogravimetric analysis showed an improvement after nano Al2O3 incorporation.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

AASHTO. 2011. Standard specifications for transportation materials and methods of sampling and testing. Washington, DC: AASHTO.
AASHTO. 2014. Standard method of test for estimating damage tolerance of asphalt binders using the linear amplitude sweep. AASHTO TP 101-14. Washington, DC: AASHTO.
Adhikari, R., S. Henning, W. Lebek, R. Godehardt, S. Ilisch, and G. H. Michler. 2005. “Structure and properties of nanocomposites based on SBS block copolymer and alumina.” Macromol. Symp. 231 (1): 116–124. https://doi.org/10.1002/masy.200590016.
Airey, G. D. 1997. “Rheological characteristics of polymer modified and aged bitumens.” Ph.D. dissertation, Dept. of Civil Engineering, Univ. of Nottingham.
Airey, G. D. 2003. “Rheological properties of styrene butadiene styrene polymer modified road bitumens.” Fuel 82 (14): 1709–1719. https://doi.org/10.1016/S0016-2361(03)00146-7.
Akbari, A., and A. Modarres. 2018. “Evaluating the effect of nano-clay and nano-alumina on the fatigue response of bitumen using strain and time sweep tests.” Int. J. Fatigue 114 (Sep): 311–322. https://doi.org/10.1016/j.ijfatigue.2018.06.007.
Ali, S. I. A., A. Ismail, M. R. Karim, N. I. M. Yusoff, R. A. Al-Mansob, and E. Aburkaba. 2017. “Performance evaluation of Al2O3 nanoparticle-modified asphalt binder.” Road Mater. Pavement Des. 18 (6): 1251–1268. https://doi.org/10.1080/14680629.2016.1208621.
Al-Mansob, R. A., A. Ismail, R. A. O. K. Rahmat, M. N. Borhan, J. M. A. Alsharef, S. I. Albrka, and M. R. Karim. 2017. “The performance of epoxidised natural rubber modified asphalt using nano-alumina as additive.” Constr. Build. Mater. 155 (Nov): 680–687. https://doi.org/10.1016/j.conbuildmat.2017.08.106.
Anwar Parvez, M., H. I. Al-Abdul Wahhab, R. A. Shawabkeh, and I. A. Hussein. 2014. “Asphalt modification using acid treated waste oil fly ash.” Constr. Build. Mater. 70 (Nov): 201–209. https://doi.org/10.1016/j.conbuildmat.2014.07.045.
Ashish, P. K., and D. Singh. 2018. “High- and intermediate-temperature performance of asphalt binder containing carbon nanotube using different rheological approaches.” J. Mater. Civ. Eng. 30 (1): 04017254. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002106.
Ashish, P. K., and D. Singh. 2019. “Use of nanomaterial for asphalt binder and mixtures: A comprehensive review on development, prospect, and challenges.” Road Mater. Pavement Des. 22 (3): 492–538. https://doi.org/10.1080/14680629.2019.1634634.
Ashish, P. K., D. Singh, and S. Bohm. 2016. “Evaluation of rutting, fatigue and moisture damage performance of nanoclay modified asphalt binder.” Constr. Build. Mater. 113 (Jun): 341–350. https://doi.org/10.1016/j.conbuildmat.2016.03.057.
ASTM. 2014. Standard practice for determining the separation tendency of polymer from polymer modified asphalt. ASTM D71730-14. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for determining the rheological properties of asphalt binder using a dynamic shear rheometer. ASTM-D7175. West Conshohocken, PA: ASTM.
ASTM. 2019. Standard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV). ASTM D6521. West Conshohocken, PA: ASTM.
ASTM. 2020a. Effects of heat and air on asphaltic materials (Thin-film oven test) 1. ASTM D1754/D1754M. West Conshohocken, PA: ASTM.
ASTM. 2020b. Standard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR). ASTM D7405. West Conshohocken, PA: ASTM.
Behfarnia, K., and N. Salemi. 2013. “The effects of nano-silica and nano-alumina on frost resistance of normal concrete.” Constr. Build. Mater. 48 (Nov): 580–584. https://doi.org/10.1016/j.conbuildmat.2013.07.088.
Bhat, F. S., and M. S. Mir. 2019. “Performance evaluation of nanosilica-modified asphalt binder.” Innovative Infrastruct. Solutions 4 (1): 63. https://doi.org/10.1007/s41062-019-0249-5.
Bhat, F. S., and M. S. Mir. 2020. “Investigating the effects of nano Al2O3 on high and intermediate temperature performance properties of asphalt binder.” Road Mater. Pavement Des. 1–22. https://doi.org/10.1080/14680629.2020.1778509.
Bhat, F. S., and M. S. Mir. 2021a. “Rheological investigation of asphalt binder modified with nanosilica.” Int. J. Pavement Res. Technol. 14 (3): 276–287. https://doi.org/10.1007/s42947-020-0327-2.
Bhat, F. S., and M. S. Mir. 2021b. “A study investigating the influence of nano Al2O3 on the performance of SBS modified asphalt binder.” Constr. Build. Mater. 271 (Feb): 121499. https://doi.org/10.1016/j.conbuildmat.2020.121499.
Bhattacharya, M. 2016. “Polymer nanocomposites—A comparison between carbon nanotubes, graphene, and clay as nanofillers.” Materials (Basel) 9 (4): 262. https://doi.org/10.3390/ma9040262.
BIS (Bureau of Indian standards). 1978a. Methods for testing tar and bituminous materials: Determination of determination of viscosity (absolute viscosity). IS: 1206 (Part-II). New Delhi, India: BIS.
BIS (Bureau of Indian standards). 1978b. Methods for testing tar and bituminous materials: Determination of ductility. IS: 1208. New Delhi, India: BIS.
BIS (Bureau of Indian standards). 1978c. Methods for testing tar and bituminous materials: Determination of penetration. IS: 1203. New Delhi, India: BIS.
BIS (Bureau of Indian standards). 1978d. Methods for testing tar and bituminous materials: Determination of softening point. IS: 1205. New Delhi, India: BIS.
BIS (Bureau of Indian standards). 1978e. Methods for testing tar and bituminous materials: Determination of viscosity (kinematic viscosity). IS: 1206 (Part-III). New Delhi, India: BIS.
Calandra, P., V. Loise, M. Porto, C. O. Rossi, D. Lombardo, and P. Caputo. 2020. “Exploiting nanoparticles to improve the properties of bitumens and asphalts: At what extent is it really worth it?” Appl. Sci. (Switzerland) 10 (15): 5230. https://doi.org/10.3390/app10155230.
Cao, W., and C. Wang. 2018. “A new comprehensive analysis framework for fatigue characterization of asphalt binder using the Linear Amplitude Sweep test.” Constr. Build. Mater. 171 (May): 1–12. https://doi.org/10.1016/j.conbuildmat.2018.03.125.
Chelovian, A., and G. Shafabakhsh. 2017. “Laboratory evaluation of Nano Al2O3 effect on dynamic performance of stone mastic asphalt.” Int. J. Pavement Res. Technol. 10 (2): 131–138. https://doi.org/10.1016/j.ijprt.2016.11.004.
Chen, J., C. Liang, B. Li, E. Wang, G. Li, and X. Hou. 2018. “The effect of nano-γAl 2O3 additive on early hydration of calcium aluminate cement.” Constr. Build. Mater. 158 (Jan): 755–760. https://doi.org/10.1016/j.conbuildmat.2017.10.071.
Coats, A. W., and J. P. Redfern. 1963. “Thermogravimetric analysis: A review.” Analyst 88 (1053): 906. https://doi.org/10.1039/an9638800906.
Coleman, J. N., U. Khan, W. J. Blau, and Y. K. Gun’ko. 2006. “Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites.” Carbon 44 (9): 1624–1652. https://doi.org/10.1016/j.carbon.2006.02.038.
Crucho, J., L. Picado-Santos, J. Neves, and S. Capitão. 2019. “A review of nanomaterials’ effect on mechanical performance and aging of asphalt mixtures.” Appl. Sci. 9 (18): 3657. https://doi.org/10.3390/app9183657.
de Melo, J. V. S., and G. Trichês. 2016. “Effects of organophilic nanoclay on the rheological behavior and performance leading to permanent deformation of asphalt mixtures.” J. Mater. Civ. Eng. 28 (11): 04016142. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001650.
Ezzat, H., S. El-Badawy, A. Gabr, E.-S. I. Zaki, and T. Breakah. 2016. “Evaluation of asphalt binders modified with nanoclay and nanosilica.” Procedia Eng. 143: 1260–1267. https://doi.org/10.1016/j.proeng.2016.06.119.
Fang, C., R. Yu, S. Liu, and Y. Li. 2013. “Nanomaterials applied in asphalt modification: A review.” J. Mater. Sci. Technol. 29 (7): 589–594. https://doi.org/10.1016/j.jmst.2013.04.008.
Galooyak, S. S., B. Dabir, A. E. Nazarbeygi, A. Moeini, and B. Berahman. 2011. “The effect of nanoclay on rheological properties and storage stability of SBS-modified bitumen.” Pet. Sci. Technol. 29 (8): 850–859. https://doi.org/10.1080/10916460903502449.
Ghavibazoo, A., and M. Abdelrahman. 2013. “Composition analysis of crumb rubber during interaction with asphalt and effect on properties of binder.” Int. J. Pavement Eng. 14 (5): 517–530. https://doi.org/10.1080/10298436.2012.721548.
Goli, A., H. Ziari, and A. Amini. 2017. “Influence of carbon nanotubes on performance properties and storage stability of SBS modified asphalt binders.” J. Mater. Civ. Eng. 29 (8): 04017070. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001910.
Gowda, R., H. Narendra, B. M. Nagabushan, D. Rangappa, and R. Prabhakara. 2017. “ScienceDirect Investigation of nano-alumina on the effect of durability and micro-structural properties of the cement mortar.” Mater. Today: Proc. 4 (11): 12191–12197.
Hajikarimi, P., M. Rahi, and F. Moghadas Nejad. 2015. “Comparing different rutting specification parameters using high temperature characteristics of rubber-modified asphalt binders.” Road Mater. Pavement Des. 16 (4): 751–766. https://doi.org/10.1080/14680629.2015.1063533.
Hajj, R., and A. Bhasin. 2018. “The search for a measure of fatigue cracking in asphalt binders—A review of different approaches.” Int. J. Pavement Eng. 19 (3): 205–219. https://doi.org/10.1080/10298436.2017.1279490.
Hamedi, G. H. 2017. “Evaluating the effect of asphalt binder modification using nanomaterials on the moisture damage of hot mix asphalt.” Road Mater. Pavement Des. 18 (6): 1375–1394. https://doi.org/10.1080/14680629.2016.1220865.
Hassan, M. M., L. N. Mohammad, S. B. Cooper, and H. Dylla. 2011. “Evaluation of nano-titanium dioxide additive on asphalt binder aging properties.” Transp. Res. Rec. 2207 (1): 11–15.
Hintz, C., R. Velasquez, C. Johnson, and H. Bahia. 2011. “Modification and validation of linear amplitude sweep test for binder fatigue specification.” Transp. Res. Rec. 2207 (1): 99–106. https://doi.org/10.3141/2207-13.
Hou, C., X. Song, F. Tang, Y. Li, L. Cao, J. Wang, and Z. Nie. 2019. “W–Cu composites with submicron- and nanostructures: Progress and challenges.” NPG Asia Mater. 11 (1): 74. https://doi.org/10.1038/s41427-019-0179-x.
Jafari, M., A. Akbari Nasrekani, M. Nakhaei, and A. Babazadeh. 2017. “Evaluation of rutting resistance of asphalt binders and asphalt mixtures modified with polyphosphoric acid.” Pet. Sci. Technol. 35 (2): 141–147. https://doi.org/10.1080/10916466.2016.1248776.
Jahromi, S. G., and A. Khodaii. 2009. “Effects of nanoclay on rheological properties of bitumen binder.” Constr. Build. Mater. 23 (8): 2894–2904. https://doi.org/10.1016/j.conbuildmat.2009.02.027.
Johnson, C., and H. Bahia. 2010. “Evaluation of an accelerated procedure for fatigue characterization of asphalt binders.” In Road materials and pavement design. Seattle: Allen Institute for AI.
Johnson, C. M. 2010. “Estimating asphalt binder fatigue resistance using an accelerated test method.” Doctoral dissertation, Dept. of Civil and Environmental Engineering, Univ. of Wisconsin-Madison.
Karahancer, S. 2020. “Effect of aluminum oxide nano particle on modified bitumen and hot mix asphalt.” Pet. Sci. Technol. 38 (13): 773–784. https://doi.org/10.1080/10916466.2020.1783292.
Kim, H., S. J. Lee, and S. N. Amirkhanian. 2011. “Rheology of warm mix asphalt binders with aged binders.” Constr. Build. Mater. 25 (1): 183–189. https://doi.org/10.1016/j.conbuildmat.2010.06.040.
Kim, H. H., M. Mazumder, M. S. Lee, and S. J. Lee. 2019. “Evaluation of high-performance asphalt binders modified with SBS, SIS, and GTR.” Adv. Civ. Eng. 2019 (1): 1–11. https://doi.org/10.1155/2019/2035954.
Laachachi, A., M. Ferriol, M. Cochez, J. M. Lopez Cuesta, and D. Ruch. 2009. “A comparison of the role of boehmite (AlOOH) and alumina (Al2O3) in the thermal stability and flammability of poly(methyl methacrylate).” Polym. Degrad. Stab. 94 (9): 1373–1378. https://doi.org/10.1016/j.polymdegradstab.2009.05.014.
Leiva-Villacorta, F., and A. Vargas-Nordcbeck. 2019. “Optimum content of nano-silica to ensure proper performance of an asphalt binder.” Road Mater. Pavement Des. 20 (2): 414–425. https://doi.org/10.1080/14680629.2017.1385510.
Li, C. L., Q. S. Mei, J. Y. Li, F. Chen, Y. Ma, and X. M. Mei. 2018. “Hall-Petch relations and strengthening of Al-ZnO composites in view of grain size relative to interparticle spacing.” Scr. Mater. 153 (Aug): 27–30. https://doi.org/10.1016/j.scriptamat.2018.04.042.
Li, R., F. Xiao, S. Amirkhanian, Z. You, and J. Huang. 2017. “Developments of nano materials and technologies on asphalt materials—A review.” Constr. Build. Mater. 143 (Jul): 633–648. https://doi.org/10.1016/j.conbuildmat.2017.03.158.
Little, D. N., D. H. Allen, and A. Bhasin. 2018. Modeling and design of flexible pavements and materials. Cham, Switzerland: Springer.
Liu, G., S. Wu, M. Van de Ven, J. Yu, and A. Molenaar. 2010. “Influence of sodium and organo-montmorillonites on the properties of bitumen.” Appl. Clay Sci. 49 (1–2): 69–73. https://doi.org/10.1016/j.clay.2010.04.005.
Lo Presti, D. 2013. “Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review.” Constr. Build. Mater. 49 (1): 863–881.
Lotfi, A., and M. S. Karimi. 2016. “Fatigue behavior of hot mix asphalt modified with nano AL2O3—An experimental study.” Adv. Sci. Technol. Res. J. 10 (31): 58–63. https://doi.org/10.12913/22998624/64011.
Lu, X., and U. Isacsson. 1997. “Rheological characterization of styrene-butadiene-styrene copolymer modified bitumens.” Constr. Build. Mater. 11 (1): 23–32. https://doi.org/10.1016/S0950-0618(96)00033-5.
Lv, S., Y. Guo, C. Xia, C. Liu, L. Hu, S. Guo, X. Wang, M. Borges Cabrera, and M. Li. 2021. “Investigation on high-temperature resistance to permanent deformation of waste leather modified asphalt.” Constr. Build. Mater. 282 (May): 122541. https://doi.org/10.1016/j.conbuildmat.2021.122541.
Micaelo, R., A. Pereira, L. Quaresma, and M. T. Cidade. 2015. “Fatigue resistance of asphalt binders: Assessment of the analysis methods in strain-controlled tests.” Constr. Build. Mater. 98 (Nov): 703–712. https://doi.org/10.1016/j.conbuildmat.2015.08.070.
Moghadas Nejad, F., R. Tanzadeh, J. Tanzadeh, and G. H. Hamedi. 2016. “Investigating the effect of nanoparticles on the rutting behaviour of hot-mix asphalt.” Int. J. Pavement Eng. 17 (4): 353–362. https://doi.org/10.1080/10298436.2014.993194.
Morris, D. G. 2011. “Strengthening mechanisms in nanocrystalline metals.” In Nanostructured metals and alloys: Processing, microstructure, mechanical properties and applications, 299–328. Sawston, UK: Woodhead Publishing.
Mubaraki, M., S. I. A. Ali, A. Ismail, and N. I. M. Yusoff. 2016. “Rheological evaluation of asphalt cements modified with ASA Polymer and Al2O3 nanoparticles.” Procedia Eng. 143: 1276–1284. https://doi.org/10.1016/j.proeng.2016.06.135.
Nazari, H., K. Naderi, and F. Moghadas Nejad. 2018. “Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles.” Constr. Build. Mater. 170 (May): 591–602. https://doi.org/10.1016/j.conbuildmat.2018.03.107.
Nejad, F. M., H. Nazari, K. Naderi, F. Karimiyan Khosroshahi, and M. Hatefi Oskuei. 2017. “Thermal and rheological properties of nanoparticle modified asphalt binder at low and intermediate temperature range.” Pet. Sci. Technol. 35 (7): 641–646. https://doi.org/10.1080/10916466.2016.1276589.
Park, S. H., and P. R. Bandaru. 2010. “Improved mechanical properties of carbon nanotube/polymer composites through the use of carboxyl-epoxide functional group linkages.” Polymer 51 (22): 5071–5077. https://doi.org/10.1016/j.polymer.2010.08.063.
Prime, R. B., H. E. Bair, S. Vyazovkin, P. K. Gallagher, and A. Riga. 2008. “Thermogravimetric analysis (TGA).” In Thermal analysis of polymers, 241–317. Hoboken, NJ: Wiley.
Saboo, N., and M. Sukhija. 2020. “Evaluating the suitability of nanoclay-modified asphalt binders from 10°C to 70°C.” J. Mater. Civ. Eng. 32 (12): 04020393. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003386.
Sabouri, M., D. Mirzaeian, and A. Moniri. 2018. “Effectiveness of linear amplitude sweep (LAS) asphalt binder test in predicting asphalt mixtures fatigue performance.” Constr. Build. Mater. 171 (May): 281–290. https://doi.org/10.1016/j.conbuildmat.2018.03.146.
Shafabakhsh, G., M. Aliakbari Bidokhti, and H. Divandari. 2020. “Evaluation of the performance of SBS/Nano-Al2O3 composite-modified bitumen at high temperature.” Road Mater. Pavement Des. 0629: 1–15. https://doi.org/10.1080/14680629.2020.1772351.
Singh, D., P. K. Ashish, A. Kataware, and A. Habal. 2017. “Evaluating performance of PPA-and-Elvaloy-modified binder containing WMA additives and lime using MSCR and LAS tests.” J. Mater. Civ. Eng. 29 (8): 04017064. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001934.
Singh, D., S. Girimath, and P. K. Ashish. 2018. “Performance evaluation of polymer-modified binder containing reclaimed asphalt pavement using multiple stress creep recovery and linear amplitude sweep tests.” J. Mater. Civ. Eng. 30 (3): 04018004. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002176.
Štefančič, M., A. Mladenovič, M. Bellotto, V. Jereb, and L. Završnik. 2017. “Particle packing and rheology of cement pastes at different replacement levels of cement by α-Al2O3 submicron particles.” Constr. Build. Mater. 139 (May): 256–266. https://doi.org/10.1016/j.conbuildmat.2017.02.079.
Steyn, W. J. M. 2009. “Potential applications of nanotechnology in pavement engineering.” J. Transp. Eng. 135 (10): 764–772. https://doi.org/10.1061/(ASCE)0733-947X(2009)135:10(764).
Sun, J., and Q. Xue. 2016. “Polymer nanocomposites.” In Polymer nanocomposites: Electrical and thermal properties, edited by X. Huang and C. Zhi. Cham, Switzerland: Springer.
Wang, C., C. Castorena, J. Zhang, and Y. Richard Kim. 2015. “Unified failure criterion for asphalt binder under cyclic fatigue loading.” Supplement, Road Mater. Pavement Des. 16 (S2): 125–148. https://doi.org/10.1080/14680629.2015.1077010.
Wang, L., N. Guo, Y. Wen, Y. Tan, and Z. You. 2020a. “Rheological properties and microscopic mechanism of rock asphalt composite modified asphalt with consideration of aging effect.” Cailiao Daobao/Mater. Rep. 34 (18): 18065–18073. https://doi.org/10.11896/cldb.19080207.
Wang, R., Y. Xiong, M. Yue, M. Hao, and J. Yue. 2020b. “Investigating the effectiveness of carbon nanomaterials on asphalt binders from hot storage stability, thermodynamics, and mechanism perspectives.” J. Cleaner Prod. 276 (Dec): 124180. https://doi.org/10.1016/j.jclepro.2020.124180.
Wang, R., J. Yue, R. Li, and Y. Sun. 2019. “Evaluation of aging resistance of asphalt binder modified with graphene oxide and carbon nanotubes.” J. Mater. Civ. Eng. 31 (11): 04019274. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002934.
Xing, X., J. Pei, C. Shen, R. Li, J. Zhang, J. Huang, and D. Hu. 2019. “Performance and reinforcement mechanism of modified asphalt binders with nano-particles, whiskers, and fibers.” Appl. Sci. 9 (15): 2995. https://doi.org/10.3390/app9152995.
Yang, J., and S. Tighe. 2013. “A review of advances of nanotechnology in asphalt mixtures.” Procedia - Social Behav. Sci. 96 (Nov): 1269–1276. https://doi.org/10.1016/j.sbspro.2013.08.144.
Yao, H., Q. Dai, and Z. You. 2015. “Fourier transform infrared spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders.” Constr. Build. Mater. 101 (Part 1): 1078–1087. https://doi.org/10.1016/j.conbuildmat.2015.10.085.
Yao, H., Z. You, L. Li, S. W. Goh, and C. Dedene. 2012. “Evaluation of the master curves for complex shear modulus for nano-modified asphalt binders.” In Proc., 12th COTA Int. Conf. of Transportation Professionals: CICTP 2012: Multimodal Transportation Systems—Convenient, Safe, Cost-Effective, Efficient, 3399–3414. Reston, VA: ASCE. https://doi.org/10.1061/9780784412442.345.
Yao, H., Z. You, L. Li, C. H. Lee, D. Wingard, Y. K. Yap, X. Shi, and S. W. Goh. 2013. “Rheological properties and chemical bonding of asphalt modified with nanosilica.” J. Mater. Civ. Eng. 25 (11): 1619–1630. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000690.
Yildirim, Y. 2007. “Polymer modified asphalt binders.” Constr. Build. Mater. 21 (1): 66–72. https://doi.org/10.1016/j.conbuildmat.2005.07.007.
Yu, J.-Y., P.-C. Feng, H.-L. Zhang, and S.-P. Wu. 2009. “Effect of organo-montmorillonite on aging properties of asphalt.” Constr. Build. Mater. 23 (7): 2636–2640. https://doi.org/10.1016/j.conbuildmat.2009.01.007.
Yusoff, N. I., E. Chailleux, and G. D. Airey. 2011. “A comparative study of the influence of shift factor equations on master curve construction.” Int. J. Pavement Res. Technol. 4 (6): 324–336.
Zangena, S. A. 2019. “Performance of asphalt mixture with nanoparticles.” In Nanotechnology in eco-efficient construction, 165–186. Sawston, UK: Woodhead Publishing.
Zhan, Y., J. Xie, Y. Wu, and Y. Wang. 2020. “Synergetic effect of nano-ZnO and trinidad lake asphalt for antiaging properties of SBS-modified asphalt.” Adv. Civ. Eng. https://doi.org/10.1155/2020/3239793.
Zhang, F., L. Wang, C. Li, and Y. Xing. 2020. “Predict the phase angle master curve and study the viscoelastic properties of warm mix crumb rubber-modified asphalt mixture.” Materials (Basel) 13 (21): 5051.
Zhang, H., Y. Gao, G. Guo, B. Zhao, and J. Yu. 2018. “Effects of ZnO particle size on properties of asphalt and asphalt mixture.” Constr. Build. Mater. 159 (Jan): 578–586. https://doi.org/10.1016/j.conbuildmat.2017.11.016.
Zhang, H. L., M. M. Su, S. F. Zhao, Y. P. Zhang, and Z. P. Zhang. 2016. “High and low temperature properties of nano-particles/polymer modified asphalt.” Constr. Build. Mater. 114 (Jul): 323–332. https://doi.org/10.1016/j.conbuildmat.2016.03.118.
Zhang, Z., and D. L. Chen. 2008. “Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites.” Mater. Sci. Eng. A 483–484 (1–2): 148–152. https://doi.org/10.1016/j.msea.2006.10.184.
Zhu, C., H. Zhang, G. Xu, and C. Wu. 2018. “Investigation of the aging behaviors of multi-dimensional nanomaterials modified different bitumens by Fourier transform infrared spectroscopy.” Constr. Build. Mater. 167 (Apr): 536–542. https://doi.org/10.1016/j.conbuildmat.2018.02.056.
Ziari, H., H. Farahani, A. Goli, and S. Sadeghpour Galooyak. 2014. “The investigation of the impact of carbon nano tube on bitumen and HMA performance.” Pet. Sci. Technol. 32 (17): 2102–2108. https://doi.org/10.1080/10916466.2013.763827.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 2February 2022

History

Received: Dec 2, 2020
Accepted: Jun 18, 2021
Published online: Nov 25, 2021
Published in print: Feb 1, 2022
Discussion open until: Apr 25, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Research Scholar, Dept. of Civil Engineering, National Institute of Technology Srinagar, Srinagar, Jammu and Kashmir 190006, India (corresponding author). ORCID: https://orcid.org/0000-0002-8886-7914. Email: [email protected]
Mohammad Shafi Mir [email protected]
Professor, Dept. of Civil Engineering, National Institute of Technology Srinagar, Srinagar, Jammu and Kashmir 190006, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share