Technical Papers
Nov 25, 2021

Basalt-Containing Pressed Cement Plates for Construction Systems: Technological and Toxicological Characterization

Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 2

Abstract

In recent years, industries have been demanded for better disposal methods of byproducts. In addition, civil construction in Brazil has been steadily growing, necessitating the development of new resources and the use of new materials. Thus, to reduce the environmental impact and costs, the use of byproducts in civil construction plays an important role. This study presents experimental results on the development of cementitious material-based plates for the construction system of panel slabs using powder technology to reduce the amount of concrete in the slab. In this study, sand was partially (58.1% by weight, C3) and totally (C1) replaced by basalt powder, a byproduct of the basaltic rock beneficiation process. Cementitious plates were obtained by uniaxial pressing at different compaction pressures. The moulded plates (M) using sand and cement were obtained as references. The bending strength at 28 days of curing was 2.50±0.10  MPa, which is higher than that of the moulded plates (1.94±0.11  MPa). It was concluded that pressing and sand substitution by basalt reduced the linear expansion from 0.059%±0.003% (M) to 0.042%±0.007% (C3), reducing the risk of cracking. The evaluation of the environmental impact showed the potential of replacing sand with basalt, thus reducing the cost of the material. Therefore, pressed plates with the total substitution of sand by basalt achieved better results related to the moulded plates and demonstrated considerable potential for application in the civil construction industry.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The authors state that all data, code, computational models, and other materials that were collected, used, and/or derived in the preparation of the published paper are publicly available.

Acknowledgments

The authors are very grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil; processes 308669/2016-9, 307761/2019-3, and 306992/2019-1) for supporting this work.

References

Andrade, F. R. D., M. Pecchio, D. P. Bendoraitis, T. J. Montanheiro, and Y. Kihara. 2010. “Basalt mine-tailings as raw-materials for Portland clinker.” Cerâmica 56 (337): 39–43. https://doi.org/10.1590/S0366-69132010000100007.
Araújo, A. R. 2008. “Estudo técnico comparativo entre pavimentos executados com lajes nervuradas e lajes convencionais.” In Monography, 113. São Paulo: Escola de Engenharia e Tecnologia, Universidade Anhembi Morumbi.
Bernardi, A. V., F. Raupp-Pereira, N. M. Possolli, S. Arcaro, and O. R. K. Montedo. 2021. “Evolution of tricalcium silicate crystalline phase by differential scanning calorimetry for the development of endodontic calcium silicate-based cements.” J. Therm. Anal. Calorim. https://doi.org/10.1007/s10973-021-10581-0.
Binici, H., Y. Yardim, O. Aksogan, R. Resatoglu, A. Dincer, and A. Karrpuz. 2020. “Durability properties of concretes made with sand and cement size basalt.” Sustainable Mater. Technol. 23 (Apr): e00145. https://doi.org/10.1016/j.susmat.2019.e00145.
Bortolotto, T., J. Silva, A. C. Santana, K. O. Tomazi, R. Geremias, E. Angioletto, and C. T. Pich. 2017. “Evaluation of toxic and genotoxic potential of a wet gas scrubber effluent obtained from wooden-based biomass furnaces: A case study in the red ceramic industry in Southern Brazil.” Ecotoxicol. Environ. Saf. 143 (Sep): 259–265. https://doi.org/10.1016/j.ecoenv.2017.05.033.
Brazilian Association of Technical Standards–ABNT. 1997. Placa cerâmica para revestimento—Especificação e métodos de ensaios: NBR 13818. Rio de Janeiro, Brazil: Brazilian Association of Technical Standards–ABNT.
Brazilian Association of Technical Standards–ABNT. 2004. Procedimento para obtenção de extrato solubilizado de resíduos sólidos: NBR 10006. Rio de Janeiro, Brazil: Brazilian Association of Technical Standards–ABNT.
Brazilian Association of Technical Standards–ABNT. 2016. Concreto—Procedimento para moldagem e cura de corpos de prova: NBR 5738—Versão Corrigida. Rio de Janeiro, Brazil: Brazilian Association of Technical Standards–ABNT.
Brazilian Association of Technical Standards–ABNT. 2018. Cimento Portland Requisitos: NBR 16697. Rio de Janeiro, Brazil: Brazilian Association of Technical Standards–ABNT.
Brazilian Association of Technical Standards–ABNT. 2019. Agregado para concreto—Especificação: NBR 7211—Versão Corrigida: 2019. Rio de Janeiro, Brazil: Brazilian Association of Technical Standards–ABNT.
Camilleri, J. 2007. “Hydration mechanisms of mineral trioxide aggregate.” Int. Endodontic J. 40 (6): 462–470. https://doi.org/10.1111/j.1365-2591.2007.01248.x.
Campiteli, V. C. 1997. Porosidade do Concreto. São Paulo: Departamento de Engenharia de Construção Civil da EPUSP.
CBIC (Câmara Brasileira da Indústria da Construção). 2019. “Indústria da construção pode gerar 150 mil postos de trabalho em 2020.” Accessed February 22, 2019. https://cbic.org.br/construcao-cresce-mais-de-4-e-ajuda-a-elevar-o-pib/.
Cota, F. P., C. C. D. Melo, T. H. Panzera, A. G. Araújo, P. H. R. Borges, and F. Scarpa. 2015. “Mechanical properties and ASR evaluation of concrete tiles with waste glass aggregate.” Sustainable Cities Soc. 16 (Aug): 49–56. https://doi.org/10.1016/j.scs.2015.02.005.
Coutinho, L. S. A. L., A. A. A. M. Duarte, R. M. das Neves, B. C. Neto, C. E. A. Maneschy, and A. M. G. S. Pinheiro. 2012. “Modelagem do tempo de execução de obras civis: estudo de caso na Universidade Federal do Pará.” Ambiente Construído 12 (1): 243–256. https://doi.org/10.1590/S1678-86212012000100016.
Dilbas, H., and Ö. Çakir. 2020. “Influence of basalt fiber on physical and mechanical properties of treated recycled aggregate concrete.” Constr. Build. Mater. 254 (Sep): 119216. https://doi.org/10.1016/j.conbuildmat.2020.119216.
Fan, T., Q. Tong, and W. J. Ye. 2013. “Composition morphology and melting crystallization characteristics of basalt fiber minerals.” J. Cent. South Univ. Sci. Technol. 10: 358–362.
Faria, M. P. 2010. “Estrutura para edifícios em concreto armado: Análise comparativa de soluções com lajes convencionais, lisas e nervuradas.” In Monography, 98. Porto Alegre: Universidade Federal do Rio Grande do Sul.
Hassan, A., F. Khairallah, H. Elsayed, A. Salman, and H. Mamdouh. 2021. “Behaviour of concrete beams reinforced using basalt and steel bars under fire exposure.” Eng. Struct. 238 (Jul): 112251. https://doi.org/10.1016/j.engstruct.2021.112251.
Hubadillah, S. K., Z. Harun, M. H. D. Othman, A. F. Ismail, and P. Gani. 2016. “Effect of kaolin particle size and loading on the characteristics of kaolin ceramic support prepared via phase inversion technique.” J. Asian Ceram. Soc. 4 (2): 164–177. https://doi.org/10.1016/j.jascer.2016.02.002.
Koppe, A., E. N. Guindani, and M. Mancio. 2015. “Avaliação do Potencial de Resíduo de Rochas Basálticas como Matéria-Prima para a Produção de Cimentos Alternativos: Processo de Álcali-Ativação.” Revista de Arquitetura IMED 4: 24–32.
Li, M., F. Gong, and Z. Wu. 2020. “Study on mechanical properties of alkali-resistant basalt fiber reinforced concrete.” Constr. Build. Mater. 245 (Jun): 118424. https://doi.org/10.1016/j.conbuildmat.2020.118424.
Machado, K. M. G., D. R. Matheus, R. T. R. Monteiro, and V. L. R. Bononi. 2005. “Biodegradation of pentachlorophenol by tropical basidiomycetes in soils contaminated with industrial residues.” World J. Microbiol. Biotechnol. 21 (3): 297–301. https://doi.org/10.1007/s11274-004-3693-z.
Maki, I., K. Fukuda, T. Imura, H. Yoshida, and S. Ito. 2016. “Formation of belite clusters from quartz grains in Portland cement clinker.” Cem. Concr. Res. 25 (4): 835–840. https://doi.org/10.1016/0008-8846(95)00074-M.
Mateus, R. 2004. “Novas tecnologias construtivas com vista à sustentabilidade da construção.” Master thesis, Curso de Engenharia Civil, Universidade do Minho.
Menezes, R. R., L. N. Marques, L. N. L. Santana, R. H. G. A. Kiminami, G. A. Neves, and H. S. Ferreira. 2010. “Use of electro-fused alumina production waste for the production of ceramic bricks and roof tiles.” Cerâmica 56 (339): 244–249. https://doi.org/10.1590/S0366-69132010000300006.
Montgomery, D. C., C. G. Runger, and N. F. Hubele. 2001. Estatística Aplicada à Engenharia. Rio de Janeiro, Brazil: Ed. Livros Técnicos e Científicos.
Ortega-Zavala, D. E., O. Burciaga-Díaz, and J. I. Escalante-García. 2021. “Chemically bonded ceramic/cementitious materials of alkali activated metakaolin processed by cold pressing.” Const. Build. Mater. 279 (Apr): 121365. https://doi.org/10.1016/j.conbuildmat.2020.121365.
Rafferty, J. P. 2018. “Augite mineral.” Accessed November 14, 2019. https://www.britannica.com/science/augite.
Raupp-Pereira, F., R. J. Ball, J. Rocha, J. A. Labrincha, and G. C. Allen. 2008. “New waste based clinkers: Belite and lime formulations.” Cem. Concr. Res. 38 (4): 511–521. https://doi.org/10.1016/j.cemconres.2007.11.008.
Schiavon, M. A., S. U. A. Redondo, and I. V. P. Yoshida. 2007. “Caracterização térmica e morfológica de fibras contínuas de basalto.” Cerâmica. 53 (236): 212–217. https://doi.org/10.1590/S0366-69132007000200017.
Sienge Plataforma. 2020. “Construção civil em 2020: Os principais marcos do ano até agora.” Accessed November 22, 2020. https://www.sienge.com.br/blog/construcao-civil-em-2020-principais-marcos/.
Simão, L., J. Jiusti, N. J. Lóh, D. Hotza, F. Raupp-Pereira, J. A. Labrincha, and O. R. K. Montedo. 2017. “Waste-containing clinkers: Valorization of alternative mineral sources from pulp and paper mills.” Process Saf. Environ. Prot. 109 (Jul): 106–116. https://doi.org/10.1016/j.psep.2017.03.038.
Sohail, M. G., W. Alnahhal, A. Taha, and K. Abdelaal. 2020. “Sustainable alternative aggregates: Characterization and influence on mechanical behavior of basalt fiber reinforced concrete.” Constr. Build. Mater. 255 (Sep): 119365. https://doi.org/10.1016/j.conbuildmat.2020.119365.
Souza, A. R. 2016. “Retração em concreto autoadensável: contribuição de produtos mitigadores.” Master thesis, Civil Engineering Dept., Universidade Tecnológica Federal do Paraná.
Staněk, T., and P. Sulovský. 2002. “The influence of the alite polymorphism on the strength of the portland cement.” Cem. Concr. Res. 32 (7): 1169–1175. https://doi.org/10.1016/S0008-8846(02)00756-1.
Tavares, L. R. C. 2008. “Avaliação da retração autógena em concretos de alto desempenho com diferentes adições.” Master thesis, Civil Engineering Dept., Universidade Federal de Minas Gerais.
Taylor, H. F. W. 1997. Cement chemistry: Default book series. London: Thomas Telford.
Urbanski, M., A. Lapko, and A. Garbacz. 2013. “Investigation on concrete beams reinforced with basalt rebars as an effective alternative of conventional R/C structures.” Procedia Eng. 57: 1183–1191. https://doi.org/10.1016/j.proeng.2013.04.149.
Wang, D., Y. Ju, H. Shen, and L. Xu. 2019. “Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber.” Constr. Build. Mater. 197 (Feb): 464–473. https://doi.org/10.1016/j.conbuildmat.2018.11.181.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 2February 2022

History

Received: Apr 1, 2021
Accepted: Jun 15, 2021
Published online: Nov 25, 2021
Published in print: Feb 1, 2022
Discussion open until: Apr 25, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Kamila Rodrigues da Silva
Professor, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, SC 88.806-000, Brazil.
Franciele B. T. de Jesus
Engineer, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, SC 88.806-000, Brazil.
Jordana Inocente
Engineer, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, SC 88.806-000, Brazil.
Sabrina Arcaro
Professor, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, SC 88.806-000, Brazil.
Fabiano Raupp-Pereira
Professor, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, SC 88.806-000, Brazil.
Professor, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, SC 88.806-000, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-3350-6732. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share