Technical Papers
Nov 17, 2021

Spray Dryer Ash from Thermoelectric Power Plants as Civil Construction Materials

Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 2

Abstract

Installing flue gas desulphurization systems before particulate collectors in thermoelectric plants generates spray dryer ash (SDA), a mixture of fly ash and sulfur products. SDA carries a large environmental liability, and research to exploit this waste is still incipient. An alternative use for SDA is as raw material for civil construction. Therefore, the objective of this article is to verify the feasibility of replacing hydrated lime with SDA in rendering mortars for façades, and using SDA as a mineral addition to concrete. For this, mortar mixes with 0%, 33%, 67%, and 100% SDA replacement contents were prepared, and tests in fresh and hard states performed. For concrete, mixes with 0%, 5%, 10%, and 20% of SDA added to the cement mass were prepared, and mechanical and durability tests performed. Results show that mortar consistency tends to increase with SDA content, decreasing its workability. Mechanical and durability properties are equal to or higher than those of the reference mix, both in concrete and mortar. Also, mortar with 67% of SDA performs the best.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors wish to express their thanks to Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP), for its financial support to the first author during the research; to Central Analítica-UFC/CT-INFRA/MCTI-SISNANO/Pró-Equipamentos CAPES, for generating the SEM images from the SDA in the study; to UFC’s X-Ray Laboratory and to Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Processo: 402561/2007-4), Edital MCT/CNPq n° 10/2007, for XRF and XRD analysis of the SDA; and to Convênio N°01/2017 between Energias de Portugal (EDP) and UFC, with the intervention of FUNDAÇÃO ASTEF.

References

ABNT (Associação Brasileira De Normas Técnicas). 2003. Cal hidratada para argamassas—Requisitos [Hydrated lime for mortars—Requirements]. [In Portuguese.] ABNT NBR 7175. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2005a. Argamassa e concreto endurecidos—Determinação da absorção de água, índice de vazios e massa específica [Hardened mortar and concrete—Determination of absorption, voids and specific gravity]. [In Portuguese.] ABNT NBR 9778. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2005b. Argamassa para assentamento e revestimento de paredes e tetos—Determinação da resistência à tração na flexão e à compressão [Mortars applied on walls and ceilings—Determination of the flexural and the compressive strength in the hardened stage]. [In Portuguese.] ABNT NBR 13279. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2006. Agregados—Determinação do inchamento de agregado miúdo—Método de ensaio [Aggregates—Determination of swelling in fine aggregates—Method of test]. [In Portuguese.] ABNT NBR 6467. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2009. Agregados para concreto—Especificação [Aggregates for concrete—Specification]. [In Portuguese.] ABNT NBR 7211. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2010a. Argamassa de assentamento e revestimento de paredes e teto s—Caracterização reológica pelo método squeeze-flow [Rendering mortar for walls and ceilings—Rheological evaluation by squeeze-flow]. [In Portuguese.] ABNT NBR 15839. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2010b. Revestimento de paredes de argamassas inorgânicas—Determinação da resistência de aderência à tração [Mortars applied on walls and ceilings—Determination of bond tensile strength]. [In Portuguese.] ABNT NBR 15258. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2012. Argamassa e concreto endurecidos—Determinação da absorção de água por capilaridade [Mortar and hardened concrete—Determination of water absorption by capillarity]. [In Portuguese.] ABNT NBR 9779. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2013a. Concreto endurecido—Determinação da velocidade de propagação de onda ultrassônica [Hardened concrete—Determination of ultrasonic wave transmission velocity]. [In Portuguese.] ABNT NBR 8802. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2013b. Revestimento de paredes de argamassas inorgânicas—Especificação [Render made of inorganic mortar walls and ceillings applications—Specification]. [In Portuguese.] ABNT NBR 13749. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2014a. Cimento Portland—Determinação da variação dimensional de barras de argamassa de cimento Portland expostas à solução de sulfato de sódio [Portland cement—Determination of volumetric change of Portland cement mortar bars exposed to sodium sulphate solution]. [In Portuguese.] ABNT NBR 13583. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2014b. Materiais pozolânicos—Determinação do índice de desempenho com cimento Portland aos 28 dias [Pozzolanic materials—Determination of the performance index with Portland cement at 28 days]. [In Portuguese.] ABNT NBR 5752. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2015. Materiais pozolânicos—Determinação da atividade pozolânica com cal aos sete dias [Pozzolanic Materials—Determination of pozzolanic activity with lime at seven days]. [In Portuguese.] ABNT NBR 5751. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2016a. Argamassa para assentamento e revestimento de paredes e tetos—Determinação do índice de consistência [Mortars applied on walls and ceilings—Determination of the consistence index]. [In Portuguese.] ABNT NBR 13276. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2016b. Argamassa para assentamento e revestimento de paredes e tetos—Preparo da mistura para a realização de ensaios [Mortars applied on walls and ceilings—Preparation of mortar mixture for tests]. [In Portuguese.] ABNT NBR 16541. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2017. Cimento Portland e outros materiais em pó—Determinação da massa específica [Portland cement and other powdered material—Determination of the specific gravity]. [In Portuguese.] ABNT NBR 16605. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2018a. Cimento Portland—Requisitos. [Portland cement—Requirements]. [In Portuguese.] ABNT NBR 16697. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira De Normas Técnicas). 2018b. Concreto—Ensaio de compressão de corpos de prova cilíndricos [Concrete—Compression test of cylindrical specimens]. [In Portuguese.] ABNT NBR 5739. Rio de Janeiro, Brazil: ABNT.
ACAA (American Coal Ash Association). 2016. Coal combustion product production and use survey, 2015. Aurora, CO: ACAA.
ASTM. 2017. Standard specification for aggregate for masonry mortar. ASTM C144-17. West Conshohocken, PA: ASTM.
ASTM. 2019. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM C618-19. West Conshohocken, PA: ASTM.
Betioli, A. M., V. M. John, P. J. P. Gleize, and R. G. Pileggi. 2009. “Caracterização reológica de pasta cimentícia: Associação de técnicas complementares” [Rheological characterization of cementitious paste: Association of complementary techniques]. [In Portuguese.] Ambiente Construído 9 (4): 37–48. https://doi.org/10.1590/s1678-86212009000400516.
Brown, G. E., and D. B. Oates. 1983. “Air entrainment in sulfate-resistant concrete.” Concr. Int. 5 (1): 36–39.
BSI (British Standards Institution). 2013. Aggregates for mortar. BS EN 13139. London: BSI.
BSI (British Standards Institution). 2015. Concrete. Complementary British standard to BS EN 206. BS 8500-1. London: BSI.
Burden, D. 2006. The durability of concrete containing high levels of fly ash. Fredericton, Canada: Univ. of New Brunswick, Dept. of Civil Engineering.
Cánovas, M. F. 1988. Patologia e terapia do concreto armado [Reinforced concrete pathology and therapy]. [In Portuguese.] São Paulo, Brazil: Pini.
Cardoso, F. A., V. M. John, and R. G. Pileggi. 2009. “Rheological behavior of mortars under different squeezing rates.” Cem. Concr. Res. 39 (9): 748–753. https://doi.org/10.1016/j.cemconres.2009.05.014.
Cardoso, F. A., V. M. John, R. G. Pileggi, and P. F. G. Banfill. 2014. “Characterisation of rendering mortars by squeeze-flow and rotational rheometry.” Cem. Concr. Res. 57 (Mar): 79–87. https://doi.org/10.1016/j.cemconres.2013.12.009.
Cardoso, F. A., R. G. Pileggi, and V. M. John. 2010. “Squeeze-flow aplicado a argamassas de revestimento: Manual de utilização” [Squeeze-flow applied to rendering mortars: User manual]. [In Portuguese.] In Vol. 1 of Boletim técnico da Escola Politécnica da USP, 1–29. São Paulo, Brazil: Univ. of São Paulo.
Castellan, J. L., D. T. Chazan, and M. L. D’ávila. 2003. “Dessulfuração em termoelétricas a carvão: O caso da usina de Candiota II” [Desulfurization in coal thermoelectric plants: The case of Candiota II plant]. [In Portuguese.] In Vol. 2 of Proc., Congresso de Inovação Tecnológica em Energia Elétrica. Brasília, Brazil: Agência Nacional de Energia Elétrica.
Coppola, L., G. Belz, G. Dinelli, and M. Collepardi. 1996. “Prefabricated building elements based on FGD gypsum and ashes from coal-fired electric generating plants.” Mater. Struct. 29 (Jun): 305–311. https://doi.org/10.1007/BF02486365.
Demirboğa, R., İ. Türkmen, and M. B. Karakoç. 2004. “Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete.” Cem. Concr. Res. 34 (12): 2329–2336. https://doi.org/10.1016/j.cemconres.2004.04.017.
ECOBA (European Coal Combustion Products Association). 2010. “Production and utilisation of CCPs in 2010 in Europe (EU 15).” Accessed September 7, 2018. http://www.ecoba.com/evjm,media/ccps/ECO-STAT_2010.pdf.
EPRI (Electric Power Research Institute). 2007. A review of literature related to the use of spray dryer absorber material: Production, characterization, utilization applications, barriers, and recommendations. Palo Alto, CA: EPRI.
Fang, D., X. Liao, X. Zhang, A. Teng, and X. Xue. 2018. “A novel resource utilization of the calcium-based semi-dry flue gas desulfurization ash: As a reductant to remove chromium and vanadium from vanadium industrial wastewater.” J. Hazard. Mater. 342 (Jan): 436–445. https://doi.org/10.1016/j.jhazmat.2017.08.060.
Gagg, C. R. 2014. “Cement and concrete as an engineering material: An historic appraisal and case study analysis.” Eng. Fail. Anal. 40 (May): 114–140. https://doi.org/10.1016/j.engfailanal.2014.02.004.
Guo, X. L., H. S. Shi, and H. Y. Liu. 2009. “Effects of a combined admixture of slag powder and thermally treated flue gas desulphurization (FGD) gypsum on the compressive strength and durability of concrete.” Mater. Struct. 42 (2): 263–270. https://doi.org/10.1617/s11527-008-9383-9.
Hamon. 2018. “Air quality systems.” Accessed September 7, 2018. https://issuu.com/altitudedesign/docs/hamon-acs-brochure-2015.
Heebink, L. V., T. D. Buckley, D. J. Hasset, E. J. Zacher, D. F. Pflughoeft-Hasset, and B. A. Dockter. 2007. “Current status of spray dryer absorber material characterization and utilization.” In Proc., World of Coal Ash (WOCA) Conf. Lexington, KY: University Press of Kentucky.
Jiang, Y., M. Wu, Q. Su, M. Lu, and C. Lin. 2011. “Dry CFB-FGD by-product utilization—International prospectives.” In Proc., World of Coal Ash (WOCA) Conf. Lexington, KY: University Press of Kentucky.
Kolenda, F., P. Retana, G. Racineux, and A. Poitou. 2003. “Identification of rheological parameters by the squeezing test.” Powder Technol. 130 (1–3): 56–62. https://doi.org/10.1016/S0032-5910(02)00227-9.
Law, D. W., A. A. Adam, T. K. Molyneaux, I. Patnaikuni, and A. Wardhono. 2015. “Long term durability properties of Class F fly ash geopolymer concrete.” Mater. Struct. 48 (3): 721–731. https://doi.org/10.1617/s11527-014-0268-9.
Marciano, Z. A. N. 1993. “Desenvolvimento de um método acelerado para avaliação da resistência de argamassas de cimento Portland expostas à solução de sulfato de sódio” [Development of an accelerated method for assessing the strength of Portland cement mortars exposed to sodium sulfate solution]. [In Portuguese.] Master thesis, Polytechnic School, Universidade de São Paulo.
Mehta, P. K., and P. J. M. Monteiro. 2006. Concrete: Microstructure, properties, and materials. 3rd ed. New York: McGraw-Hill.
Neto, C. Z. M. 2011. “Absorção capilar e resistividade elétrica de concretos compostos com cinza de casca de arroz de diferentes teores de carbono grafítico” [Capillary absorption and electrical resistivity of concretes made with rice husk ash of different levels of graphitic carbon]. [In Portuguese.] Master thesis, Postgraduate Program in Civil Engineering, Universidade Federal de Santa Maria.
Nokken, M., A. Boddy, X. Wu, and R. D. Hooton. 2008. “Effects of temperature, chemical, and mineral admixtures on the electrical conductivity of concrete.” J. ASTM Int. 5 (5): 1–9. https://doi.org/10.1520/JAI101296.
Olivia, M., and H. Nikraz. 2011. “Strength and water penetrability of fly ash geopolymer concrete.” J. Eng. Appl. Sci. 6 (7): 70–78.
Prakaypun, W., and S. Jinawath. 2003. “Comparative effect of additives on the mechanical properties of plasters made from flue-gas desulfurized and natural gypsums.” Mater. Struct. 36 (1): 51–58. https://doi.org/10.1007/BF02481571.
RILEM. 1980. “Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods.” Mater. Struct. 13 (75): 175–253.
Rodrigues, P. P. 1995. Parâmetros de dosagem do concreto [Concrete dosing parameters]. [In Portuguese.]. São Paulo, Brazil: Brazilian Portland Cement Association.
Rohde, G. M. 2013. “Cinzas, a outra metade do carvão fóssil-nova estratégia para a termeletricidade” [Ashes, the other half of fossil coal—A new strategy for thermoelectricity]. [In Portuguese.] In Proc., IV Congresso Brasileiro de Carvão Mineral, 22–24. Porto Alegre, Brazil: Federal University of Rio Grande do Sul.
Sampaio, K. N. H. 2017. “Avaliação técnica da utilização de cinzas de combustão do carvão mineral proveniente de termelétrica em argamassas de revestimento” [Technical evaluation of the use of ashes from the combustion of mineral coal from thermoelectric in coating mortars]. [In Portuguese.] Master thesis, Postgraduate Program in Civil Engineering (Structures and Civil Construction), Federal Univ. of Ceará.
Santana, R. A. A. 2018. “Avaliação do uso dos subprodutos da dessulfurização semi-seca dos gases da combustão da termelétrica do Pecém como insumo para a construção civil” [Evaluation of by-products from semi-dry desulfurization of combustion gases from Pecém thermoelectric plant as an input for civil construction]. [In Portuguese.] Master thesis, Postgraduate Program in Civil Engineering (Structures and Civil Construction), Federal Univ. of Ceará.
Shen, Y., L. S. Yang, C. J. Li, C. M. Chen, and S. T. Liu. 2015. “The study on thermal stability of Hg and S element in semi-dry flue gas desulfurization ash.” Appl. Mech. Mater. 768 (Jun): 434–440. https://doi.org/10.4028/www.scientific.net/AMM.768.434.
Silva, P., and J. de Brito. 2013. “Electrical resistivity and capillarity of self-compacting concrete with incorporation of fly ash and limestone filler.” Adv. Concr. Constr. 1 (1): 65-84. https://doi.org/10.12989/acc.2013.1.1.065.
Stamm, H. R. 2003. “Método para avaliação de impacto ambiental (AIA) em projetos de grande porte: Estudo de caso de uma usina termelétrica” [Environmental impact assessment method (EIA) in large projects: Case study of a thermoelectric plant]. [In Portuguese.] Dissertation, Postgraduate Program in Industrial Engineering, Federal Univ. of Santa Catarina.
Toutou, Z., N. Roussel, and C. Lanos. 2005. “The squeezing test: A tool to identify firm cement-based material’s rheological behaviour and evaluate their extrusion ability.” Cem. Concr. Res. 35 (10): 1891–1899. https://doi.org/10.1016/j.cemconres.2004.09.007.
Tsimas, S., and A. Moutsatsou-Tsima. 2005. “High-calcium fly ash as the fourth constituent in concrete: Problems, solutions and perspectives.” Cem. Concr. Compos. 27 (2): 231–237. https://doi.org/10.1016/j.cemconcomp.2004.02.012.
UNE (Una Norma Española). 2012. Durabilidad del hormigón—Determinación de la resistividad—Parte 2: Método de las cuatro puntas o de Wenner [Concrete durability. Test methods. Determination of electrical resistivity—Part 2: Four points or Wenner method]. [In Spanish.] UNE 83988-2. Madrid, España: Asociación Española de Normalización y Certificación.
Vieira, A. D. A. P. 2005. “Estudo do aproveitamento de resíduos de cerâmica vermelha como substituição pozolânica em argamassas e concretos” [Study of the use of red ceramic waste as a pozzolanic substitution in mortar and concrete]. [In Portuguese.] Master thesis, Urban Engineering, Universidade Federal da Paraíba.
Whiting, D. A., and M. A. Nagi. 2003. Electrical resistivity of concrete—A literature review. Skokie, IL: Portland Cement Association.
Wu, M.-C. M., Y. Jiang, Q. Su, T. Robl, R. Jewell, T. S. Butalia, W. Zhang, and W. Wolfe. 2013. “Dry FGD by-product characteristics and utilization-international perspective.” In Proc., World of Coal Ash (WOCA) Conf., 22–25. Lexington, KY: University Press of Kentucky.
Yamei, Z., S. Wei, and S. Lianfei. 1997. “Mechanical properties of high performance concrete made with high calcium high sulfate fly ash.” Cem. Concr. Res. 27 (7): 1093–1098. https://doi.org/10.1016/S0008-8846(97)00087-2.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 2February 2022

History

Received: Sep 28, 2020
Accepted: Jun 3, 2021
Published online: Nov 17, 2021
Published in print: Feb 1, 2022
Discussion open until: Apr 17, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Postgraduate Program in Civil Engineering (Structures and Civil Construction), Federal Univ. of Ceará (UFC), Campus Universitário do Pici, Bloco 733,  Fortaleza/CE, CEP 60455-900, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-6666-5879. Email: [email protected]
Associate Professor, Postgraduate Program in Civil Engineering (Structures and Civil Construction), Federal Univ. of Ceará (UFC), Campus Universitário do Pici, Bloco 733,  Fortaleza/CE, CEP 60455-900, Brazil. ORCID: https://orcid.org/0000-0001-6394-1164. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share