Abstract

In Brazil, large quantities of iron ore tailings (IOT) are produced as a result of iron mining, which may affect the environment negatively. This work evaluated the use of IOT in hot mix asphalt type C (HMA-C). For this purpose, IOT was incorporated as a filler (at 1% in relation to the total mass of HMA-C). The hot asphalt mix with IOT (called HMA-IOT) was designed and compared with a control HMA-C. The behavior of the mixtures under monotonic (indirect tensile strength, ITS, and the Marshall stability test), under dynamic (fatigue and resilient modulus tests), and static (static creep test) loading conditions was evaluated. Also, the resistance to induced moisture damage (tensile strength ratio, TSR) was calculated. As a general conclusion, it was shown that the use of IOT in HMA improves its mechanical response without increasing mixing and compaction temperatures and using less effective asphalt binder content. This could provide a new form of environmentally safe disposal of IOTs.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

Acknowledgments

The authors are grateful to the CAPES Faculty of Technology and Infralab (Universidade de Brasilia) for financial support for this research.

References

AASHTO. 1991. Standard method of test for specific gravity and absorption of coarse aggregate. Washington, DC: AASHTO.
AASHTO. 1999. Standard method of test for soundness of aggregate by use of sodium sulfate or magnesium sulfate. Washington, DC: AASHTO.
AASHTO. 2000. Standard method of test for specific gravity and absorption of fine aggregate. Washington, DC: AASHTO.
AASHTO. 2002a. Standard method of test for plastic fines in graded aggregates and soils by use of the sand equivalent test. Washington, DC: AASHTO.
AASHTO. 2002b. Standard method of test for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. Washington, DC: AASHTO.
AASHTO. 2003. Standard method of test for specific gravity of soil solids by water pycnometer. Washington, DC: AASHTO.
AASHTO. 2015. Standard method of test for resistance to plastic flow of bituminous mixtures using Marshall apparatus. Washington, DC: AASHTO.
AASHTO. 2018a. Standard method of test for resistance of compacted asphalt mixtures to moisture-induced damage. Washington, DC: AASHTO.
AASHTO. 2018b. Standard method of test for specific gravity of semi-solid asphalt materials. Washington, DC: AASHTO.
Akiyama, T., H. Ohta, R. Takahashi, Y. Waseda, and J. Yagi. 1992. “Measurement and modeling of iron ore thermal conductivity for dense iron agglomerates in stepwise reduction.” ISIJ Int. 32 (7): 829–837. https://doi.org/10.2355/isijinternational.32.829.
Ananthayya, M. B., and K. Vijay. 2014. “Effect of partial replacement of sand by iron ore tailing (IOT) and cement by ground granulated blast furnace slag (GGBFS) on the compressive strength of concrete.” 3 (8): 192–197.
ASTM. 1999. Standard test method for ductility of bituminous materials. West Conshohocken, PA: ASTM.
ASTM. 2000. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. West Conshohocken, PA: ASTM.
ASTM. 2001. Standard test method for determining the percentage of fractured particles in coarse aggregate. West Conshohocken, PA: ASTM.
ASTM. 2006. Standard test method for softening point of bitumen (ring and- ball apparatus). West Conshohocken, PA: ASTM.
ASTM. 2012. Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test). West Conshohocken, PA: ASTM.
ASTM. 2013. Standard test method for penetration of bituminous materials. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard test method for indirect tensile (IDT) strength of asphalt mixtures. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standar test methods for particle-size distribution (Gradation) of soil using sieve analysis. ASTM D6913. West Conshohocken, PA: ASTM.
ASTM. 2019. Standard test method for flash point of cutback asphalt with tag open-cup apparatus. West Conshohocken, PA: ASTM.
Bastidas-Martínez, J. G., H. A. Rondón-Quintana, and M. Muniz de Farias. 2021. “Behavior of asphalt mastics containing different materials as filler.” Can. J. Civ. Eng. 48 (4): 347–355. https://doi.org/10.1139/cjce-2019-0342.
Bastos, L. A., G. C. Silva, J. C. Mendes, and R. A. F. Peixoto. 2016. “Using iron ore tailings from tailing dams as road material.” J. Mater. Civ. Eng. 28 (10): 1–9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001613.
Bharath, G., K. S. Reddy, V. Tandon, and M. A. Reddy. 2021. “Aggregate gradation effect on the fatigue performance of recycled asphalt mixtures.” Road Mater. Pavement Des. 22 (1): 165–184. https://doi.org/10.1080/14680629.2019.1620116.
Cala, A., S. Caro, M. Lleras, and Y. Rojas-Agramonte. 2019. “Impact of the chemical composition of aggregates on the adhesion quality and durability of asphalt-aggregate systems.” Constr. Build. Mater. 216 (Aug): 661–672. https://doi.org/10.1016/j.conbuildmat.2019.05.030.
Carrasco, E. V. M., M. D. C. Magalhaes, W. J. D. Santos, R. C. Alves, and J. N. R. Mantilla. 2017. “Characterization of mortars with iron ore tailings using destructive and nondestructive tests.” Constr. Build. Mater. 131 (Aug): 31–38. https://doi.org/10.1016/j.conbuildmat.2016.11.065.
Chen, S. J., and X. N. Zhang. 2012. “Mechanics and pavement properties research of nanomaterial modified asphalt.” Adv. Eng. Forum 5 (9): 259–264. https://doi.org/10.4028/www.scientific.net/AEF.5.259.
Choudhary, J., B. Kumar, and A. Gupta. 2020. “Utilization of solid waste materials as alternative fillers in asphalt mixes: A review.” Constr. Build. Mater. 234 (Aug):117271. https://doi.org/10.1016/j.conbuildmat.2019.117271.
Christopher, A. 2019. “Mineral industry surveys.” In Iron ore statistics and information. Washington, DC: USGS.
Clout, J. M. F., and J. R. Manuel. 2003. “Fundamental investigations of differences in bonding mechanisms in iron ore sinter formed from magnetite concentrates and hematite ores.” Powder Technol. 130 (1–3): 393–399. https://doi.org/10.1016/S0032-5910(02)00241-3.
Cong, P., S. Chen, and H. Chen. 2012. “Effects of diatomite on the properties of asphalt binder.” Constr. Build. Mater. 30 (Aug): 495–499. https://doi.org/10.1016/j.conbuildmat.2011.11.011.
Cornell, R. M., and Schweramann, U. 1996. The iron oxides: Structure, properties, reactions, occurrence and uses. Hoboken, NJ: Wiley.
Dan, L., C. Zheng, Q. Yong, B. Heng, K. Li, and J. Huang. 2014. “Analysing the effects of the mesoscopic characteristics of mineral powder fillers on the cohesive strength of asphalt mortars at low temperatures.” Constr. Build. Mater. 65 (Aug): 330–337. https://doi.org/10.1016/j.conbuildmat.2014.04.123.
Dauce, P. D., G. B. Castro, M. M. Lima, and R. Lima. 2019. “Characterisation and magnetic concentration of an iron ore tailings.” Integr. Med. Res. 8 (1): 1052–1059. https://doi.org/10.1016/j.jmrt.2018.07.015.
Deraz, N. M., and A. Alarifi. 2012. “Novel processing and magnetic properties of hematite/maghemite nano-particles.” Ceram. Int. 38 (5): 4049–4055. https://doi.org/10.1016/j.ceramint.2011.12.081.
Di Benedetto, H., C. De La Roche, H. Baaj, A. Pronk, and R. Lundström. 2004. “Fatigue of bituminous mixtures.” Mater. Struct. Constr. 37 (3): 202–216. https://doi.org/10.1007/BF02481620.
DNER (Departamento Nacional de Estradas de Rodagem). 1994a. Agregado graúdo-adesividade a ligante betuminoso. [In Portuguese.]. Vacaria, Brazil: DNER.
DNER (Departamento Nacional de Estradas de Rodagem). 1994b. Agregado-determinação do índice de forma. [In Portuguese.]. Vacaria, Brazil: DNER.
DNIT (Departamento Nacional de Infraestructura dos Transportes). 2006. Pavimentos flexíveis—Concreto asfáltico–Especificação de serviço. DNIT 031. Rio de Janeiro, Brazil: DNIT.
Duan, P., C. Yan, W. Zhou, and D. Ren. 2016. “Development of fly ash iron ore tailing based porous geopolymer for removal of Cu(II) from wasterwater.” Ceram. Int. 42 (12): 13507–13518. https://doi.org/10.1016/j.ceramint.2016.05.143.
Fang, C., R. Yu, Y. Zhang, J. Hu, M. Zhang, and X. Mi. 2012. “Combined modification of asphalt with polyethylene packaging waste and organophilic montmorillonite.” Polym. Test. 31 (2): 276–281. https://doi.org/10.1016/j.polymertesting.2011.11.008.
Fontes, W. C., E. Cristine, P. Costa, J. C. Mendes, G. Jorge, and B. Silva. 2018. “Iron ore tailings in the production of cement tiles: A value analysis on building sustainability.” Ambiente Construído 18 (4): 395–412. https://doi.org/10.1590/s1678-86212018000400312.
Fontes, W. C., J. M. Franco, D. Carvalho, L. C. R. Andrade, A. M. Segadães, and R. A. F. Peixoto. 2019. “Assessment of the use potential of iron ore tailings in the manufacture of ceramic tiles: From tailings-dams to ‘brown porcelain.’” Constr. Build. Mater. 206 (Aug): 111–121. https://doi.org/10.1016/j.conbuildmat.2019.02.052.
Galvão, J. L., H. D. Andrade, G. J. Silva, R. A. Peixoto, and J. C. Mendes. 2018. “Reuse of iron ore tailings from tailings dams as pigment for sustainable paints.” J. Cleaner Prod. 200 (98): 412–422. https://doi.org/10.1016/j.jclepro.2018.07.313.
Gayana, B. C., and K. R. Chandar. 2018. “Sustainable use of mine waste and tailings with suitable admixture as aggregates in concrete pavements-A review.” Adv. Concr. Constr. 6 (3): 221–243. https://doi.org/10.12989/acc.2018.6.3.221.
Gencel, O. 2011. “Physical and mechanical properties of concrete containing hematite as aggregates.” Sci. Eng. Compos. Mater. 18 (3): 191–199. https://doi.org/10.1515/secm.2011.031.
Gencel, O., W. Brostow, C. Ozel, and M. Filiz. 2010. “Concretes containing hematite for use as shielding barriers.” Medziagotyra 16 (3): 249–256.
Giuffrè, T., M. Morreale, G. Tesoriere, and S. Trubia. 2018. “Rheological behaviour of a bitumen modified with metal oxides obtained by regeneration processes.” Sustainable 10 (604): 1–11. https://doi.org/10.3390/su10030604.
Giustozzi, F., K. Mansour, F. Patti, M. Pannirselvam, and F. Fiori. 2018. “Shear rheology and microstructure of mining material-bitumen composites as filler replacement in asphalt mastics.” Constr. Build. Mater. 171 (Aug): 726–735. https://doi.org/10.1016/j.conbuildmat.2018.03.190.
Hamedi, G. H. 2018. “Investigating the use of nano coating over the aggregate surface on moisture damage of asphalt mixtures.” Int. J. Civ. Eng. 16 (6): 659–669. https://doi.org/10.1007/s40999-016-0143-x.
Hassan, M. M., L. N. Mohammad, S. B. Cooper, and H. Dylla. 2011. “Evaluation of nano-titanium dioxide additive on asphalt binder aging properties.” Transp. Res. Rec. 1972 (2207): 11–15. https://doi.org/10.3141/2207-02.
Huang, B., Q. Dong, and E. G. Burdette. 2009. “Laboratory evaluation of incorporating waste ceramic materials into Portland cement and asphaltic concrete.” Constr. Build. Mater. 23 (12): 3451–3456. https://doi.org/10.1016/j.conbuildmat.2009.08.024.
Huang, X., R. Ranade, W. Ni, and V. C. Li. 2013. “Development of green engineered cementitious composites using iron ore tailings as aggregates.” Constr. Build. Mater. 44 (Aug): 757–764. https://doi.org/10.1016/j.conbuildmat.2013.03.088.
Hussein, A. A., R. P. Jaya, N. Abdul Hassan, H. Yaacob, G. F. Huseien, and M. H. W. Ibrahim. 2017. “Performance of nanoceramic powder on the chemical and physical properties of bitumen.” Constr. Build. Mater. 156 (Aug): 496–505. https://doi.org/10.1016/j.conbuildmat.2017.09.014.
Hussein, A. A., R. Putra Jaya, H. Yaacob, N. Abdul Hassan, S. R. Oleiwi Aletba, G. F. Huseien, E. Shaffie, and M. R. Mohd Hasan. 2021. “Physical, chemical and morphology characterisation of nano ceramic powder as bitumen modification.” Int. J. Pavement Eng. 22 (7): 1–14. https://doi.org/10.1080/10298436.2019.1650277.
Jahromi, S. G., and A. Khodaii. 2009. “Effects of nanoclay on rheological properties of bitumen binder.” Constr. Build. Mater. 23 (8): 2894–2904. https://doi.org/10.1016/j.conbuildmat.2009.02.027.
Kalkattawi, H., M. N. Fatani, and S. Zahran. 1995. “Effect of filler on the engineering properties of asphalt mixtures.” In Proc., 4th Saudi Engineering Conf., 465–472. Jeddah, Saudi Arabia: King Abdulaziz Univ.
Kharita, M. H., M. Takeyeddin, M. Alnassar, and S. Yousef. 2008. “Development of special radiation shielding concretes using natural local materials and evaluation of their shielding characteristics.” Prog. Nucl. Energy 50 (1): 33–36. https://doi.org/10.1016/j.pnucene.2007.10.004.
Krivenko, P., O. Kovalchuk, and O. Boiko. 2019. “Practical experience of construction of concrete pavement using non- conditional aggregates.” IOP Conf. Ser.: Mater. Sci. Eng. 708: 012089. https://doi.org/10.1088/1757-899X/708/1/012089.
Kumar, B. N. S., R. Suhas, S. U. Shet, and J. M. Srishaila. 2014. “Utilization of iron ore tailings as replacement to fine aggregates in cement concrete pavements.” Int. J. Res. Eng. Technol. 3 (7): 369–376. https://doi.org/10.15623/ijret.2014.0307063.
Kumar, R., R. Sakthivel, R. Behura, B. K. Mishra, and D. Das. 2015. “Synthesis of magnetite nanoparticles from mineral waste.” J. Alloys Compd. 645 (8): 398–404. https://doi.org/10.1016/j.jallcom.2015.05.089.
Kuranchie, F. A., S. K. Shukla, and D. Habibi. 2016. “Utilisation of iron ore mine tailings for the production of geopolymer bricks.” Int. J. Mining Reclam. Environ. 30 (2): 92–114. https://doi.org/10.1080/17480930.2014.993834.
Legodi, M. A., and D. de Waal. 2007. “The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste.” Dye. Pigment. 74 (1): 161–168. https://doi.org/10.1016/j.dyepig.2006.01.038.
Lesueur, D., and D. N. Little. 1999. “Effect of hydrated lime on rheology, fracture, and aging of bitumen.” J. Transp. Res. Board 1661 (1): 93–105. https://doi.org/10.3141/1661-14.
Li, C., H. Sun, J. Bai, and L. Li. 2010. “Innovative methodology for comprehensive utilization of iron ore tailings: Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting.” J. Hazard. Mater. 174 (1–3): 71–77. https://doi.org/10.1016/j.jhazmat.2009.09.018.
Luo, L., Y. Zhang, S. Bao, and T. Chen. 2016. “Utilization of iron ore tailings as raw material for Portland cement clinker production.” Adv. Mater. Sci. Eng. 2016 (1): 1–6. https://doi.org/10.1155/2016/1596047.
Ma, B., L. Cai, X. Li, and S. Jian. 2016. “Utilization of iron tailings as substitute in autoclaved aerated concrete: Physico-mechanical and microstructure of hydration products.” J. Cleaner Prod. 127 (3): 162–171. https://doi.org/10.1016/j.jclepro.2016.03.172.
Maiti, S. K., S. Nandhini, and M. Das. 2005. “Accumulation of metals by naturally growing herbaceous and tree species in iron ore tailings.” Int. J. Environ. Stud. 62 (5): 593–603. https://doi.org/10.1080/00207230500241652.
Mølgaard, J., and W. W. Smeltzer. 1971. “Thermal conductivity of magnetite and hematite.” J. Appl. Phys. 42 (9): 1971. https://doi.org/10.1063/1.1660785.
Muniz de Farias, M., F. Quiñonez-Sinisterra, and H. A. Rondón-Quintana. 2018. “Behavior of a hot-mix asphalt made with recycled concrete aggregate and crumb rubber.” Can. J. Civ. Eng. 70 (Apr): 1–39. https://doi.org/10.1139/cjce-2018-0443.
NCHRP (National Cooperative Highway Research Program). 2002. Simple performance test for Superpave mix design. Report 465—Appendix C. Test method for static creep/flow time of asphalt concrete mixtures in compression. Washington, DC: Transportation Research Board.
NLT (Normas del Laboratorio de Transporte). 1988. Método para determinar la variacion de la consistencia del betún asfáltico con los cambios de temperatura (susceptibilidad) [Method to determine the variation in the consistency of asphalt bitumen with temperatura changes (susceptibility)]. Madrid, Spain: NLT.
Osinubi, K. J., A. O. Eberemu, P. Yohanna, and R. K. Etim. 2016. “Reliability estimate of the compaction characteristics of iron ore trailings treated tropical black clay as road pavements sub-base material.” Geo-Chicago 2016 GSP 271 (Sep): 855–864. https://doi.org/10.1061/9780784480144.085.
Osinubi, K. J., P. Yohanna, and A. O. Eberemu. 2015. “Cement modification of tropical black clay using iron ore tailings as admixture.” Trans. Geotech. 5 (Sep): 35–49. https://doi.org/10.1016/j.trgeo.2015.10.001.
Qian, G., K. Wang, X. Bai, T. Xiao, D. Jin, and Q. Huang. 2018. “Effects of surface modified phosphate slag powder on performance of asphalt and asphalt mixture.” Constr. Build. Mater. 158 (Aug): 1081–1089. https://doi.org/10.1016/j.conbuildmat.2017.09.123.
Rasouli, A., A. Kavussi, M. Jalili, and A. Hossein. 2018. “Evaluating the effect of laboratory aging on fatigue behavior of asphalt mixtures containing hydrated lime.” Constr. Build. Mater. 164 (Aug): 655–662. https://doi.org/10.1016/j.conbuildmat.2018.01.003.
Rodgers, W. J., B. Gunay, and A. Woodside. 2010. “Rheological and electrical properties of modified bitumen.” Proc. Inst. Civ. Eng. Transp. 163 (4): 175–182. https://doi.org/10.1680/tran.2010.163.4.175.
Rondón-Quintana, H. A., H. A. H. A. Rondón-Quintana, J. C. Ruge-Cárdenas, J. G. Bastidas-Martínez, M. Y. Velandia-Castelblanco, and M. Muniz De Farias. 2020. “Use of thermally treated bentonite as filler in hot mix asphalt.” J. Mater. Civ. Eng. 32 (5): 04020070. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003127.
Sant´ana Filho, J. N., S. N. Silva, G. C. Silva, and J. C. Mendes, and R. A. Peixoto. 2017. “Technical and environmental feasibility of interlocking concrete pavers with iron ore tailings from tailings dams.” J. Mater. Civ. Eng. 29 (9): 1–6. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001937.
Shetty, K. K., and G. Nayak. 2014. “Effect of red mud and iron ore tailings on the strength of self- compacting concrete.” J. Euro. Sci. 10 (21): 168–176. https://doi.org/10.19044/ESJ.2014.V10N21P%P.
Sirkeci, A. A., A. Gül, G. Bulut, and F. Arslan. 2007. “Recovery of Co, Ni, and Cu from the tailings of divrigi iron ore concentrator.” J. Int. Miner. Process. Extr. Metall. Rev. 27 (2): 131–141. https://doi.org/10.1080/08827500600563343.
Snow, C. L., C. R. Lee, Q. Shi, J. Boerio-Goates, and B. Woodfield. 2010. “Size-dependence of the heat capacity and thermodynamic properties of hematite (α-Fe2O3).” J. Chem. Thermodyn. 42 (9): 1142–1151. https://doi.org/10.1016/j.jct.2010.04.009.
Swetha, K. S., S. K. N., Bhavya, and S. B. Anadinni. 2015. “Characterization of materials by partially replacing cement by copper ore tailing and sand by iron ore tailing.” J. Int. Res. Eng. Technol. 4 (7): 374–377.
Tadic, M., M. Panjan, V. Damnjanovic, and I. Milosevic. 2014. “Magnetic properties of hematite (α-Fe 2 O 3) nanoparticles prepared by hydrothermal synthesis method.” Appl. Surf. Sci. 320 (25): 183–187. https://doi.org/10.1016/j.apsusc.2014.08.193.
Uchechukwu, E. A., and M. J. Ezekiel. 2014. “Evaluation of the iron ore tailings from Itakpe in Nigeria as concrete material.” Adv. Mater. 3 (4): 27–32. https://doi.org/10.11648/j.am.20140304.12.
Ugama, T. I., S. P. Ejeh, and D. Y. Amartey. 2014. “Effect of iron ore tailing on the properties of concrete.” Civ. Environ. Res. 6 (10): 7–14.
Ullas, S. N., B. V. V. Reddy, and K. S. N. Rao. 2010. “Characteristics of masonry units from iron ore tailings.” In Proc., Int. Conf. on sustainable Built Environment (ICSBE-2010), 108–114. Moratuwa, Sri Lanka: Univ. of Moratuwa.
Umara, A., M. Warid, Y. Ahmad, and J. Mirza. 2016. “Evaluation of iron ore tailings as replacement for fine aggregate in concrete.” Constr. Build. Mater. 120 (Aug): 72–79. https://doi.org/10.1016/j.conbuildmat.2016.05.095.
UNE-EN (Una Norma Española-Norma Europea). 2018. Mezclas bituminosas. Métodos de ensayo. Parte 24: Resistencia a la Fatiga. Madrid, Spain: 1NLT.
Veytskin, Y., C. Bobko, C. Castorena, and Y. R. Kim. 2015. “Nanoindentation investigation of asphalt binder and mastic cohesion.” Constr. Build. Mater. 100 (Aug): 163–171. https://doi.org/10.1016/j.conbuildmat.2015.09.053.
Wallingford, R. M., A. Murphy, L. Walker, and S. Vallesi. 2019. A review of the risks posed by the failure of tailings dams. Wallingford, UK: HR Wallingford.
Wang, C., P. Wang, Y. Li, and Y. Zhao. 2015. “Laboratory investigation of dynamic rheological properties of tourmaline modified bitumen.” Constr. Build. Mater. 80 (Aug): 195–199. https://doi.org/10.1016/j.conbuildmat.2014.12.105.
Wang, Z., C. Xu, S. Wang, J. Gao, and T. Ai. 2016. “Utilization of magnetite tailings as aggregates in asphalt mixtures.” Constr. Build. Mater. 114 (Aug): 392–399. https://doi.org/10.1016/j.conbuildmat.2016.03.139.
Widojoko, L. 2013. “Evaluation the use of tailings as a filler in asphalt concrete - wearing course based on results of laboratory tests to the Indonesian specification for hot-mix asphalt year 2010.” Adv. Mater. Res. 723 (2): 328–336. https://doi.org/10.4028/www.scientific.net/AMR.723.328.
Yao, R., S. Liao, C. Dai, Y. Liu, X. Chen, and F. Zheng. 2015. “Preparation and characterization of novel glass—Ceramic tile with microwave absorption properties from iron ore tailings.” J. Manage. Mag. Mater. 378 (25): 367–375. https://doi.org/10.1016/j.jmmm.2014.11.066.
Ye, Q., W. Dong, S. Wang, and H. Li. 2019. “Research on the rheological characteristics and aging resistance of asphalt modified with tourmaline.” Materials (Basel) 69 (1): 1–13. https://doi.org/10.3390/ma13010069.
Yisa, G. L., D. O. Akanbi, and N. Building. 2016. “Effect of iron ore tailing on compressive strength of manufactured laterite bricks and its reliability estimate.” Civ. Environ. Res. 8 (8): 48–58.
Yohanna, P., J. R. Oluremi, A. O. Eberemu, K. J. Osinubi, and J. E. Sani. 2019. “Reliability assessment of bearing capacity of cement—Iron ore tailing blend black cotton soil for strip foundations.” Geotech. Geol. Eng. 37 (2): 915–929. https://doi.org/10.1007/s10706-018-0660-2.
Zhang, H., H. Li, A. Abdelhady, N. Xie, W. Li, J. Liu, X. Liang, and B. Yang. 2020a. “Fine solid wastes as a resource-conserving filler and their influence on the performance of asphalt materials.” J. Cleaner Prod. 252 (Sep): 119929. https://doi.org/10.1016/j.jclepro.2019.119929.
Zhang, J., P. Li, M. Liang, H. Jiang, Z. Yao, X. Zhang, and S. Yu. 2020b. “Utilization of red mud as an alternative mineral filler in asphalt mastics to replace natural limestone powder.” Constr. Build. Mater. 237 (Aug): 117821. https://doi.org/10.1016/j.conbuildmat.2019.117821.
Zhang, S., X. Xue, X. Liu, P. Duan, H. Yang, D. Jiang, D. Wang, and R. Liu. 2006. “Current situation and comprehensive utilization of iron ore tailing resources.” J. Min. Sci. 42 (2): 403–408. https://doi.org/10.1007/s10913-006-0069-9.
Zhang, T., P. Gao, P. Gao, J. Wei, and Q. Yu. 2013. “Effectiveness of novel and traditional methods to incorporate industrial wastes in cementitious materials—An overview.” Resour. Resour. Conserv. Recycl. 74 (Aug): 134–143. https://doi.org/10.1016/j.resconrec.2013.03.003.
Ziari, H., R. Babagoli, M. Ameri, and A. Akbari. 2014. “Evaluation of fatigue behavior of hot mix asphalt mixtures prepared by bentonite modified bitumen.” Constr. Build. Mater. 68 (Aug): 685–691. https://doi.org/10.1016/j.conbuildmat.2014.06.066.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 1January 2022

History

Received: Jan 9, 2021
Accepted: May 19, 2021
Published online: Oct 26, 2021
Published in print: Jan 1, 2022
Discussion open until: Mar 26, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, Faculty of Engineering, Universidad Católica de Colombia, Diagonal 46A #15B–10, Bogotá DC 110231, Colombia (corresponding author). ORCID: https://orcid.org/0000-0002-6818-0322. Email: [email protected]
Jose Camapum de Carvalho [email protected]
Full Professor, Faculty of Technology, Faculty of Engineering, Universidade de Brasília, Campus Universitário Darcy Ribeiro, CEP 70910-900, Brasília-DF, Brazil. Email: [email protected]
Leda Lucena Cristhiane [email protected]
Full Professor, Departamento de Engenharia Civil, Faculty of Engineering, Universidade Federal de Campina Grande, Rua Aprígio Veloso 882, Universitário, Campina Grande-PB 58428-830, Brazil. Email: [email protected]
Márcio Muniz de Farias [email protected]
Full Professor, Faculty of Technology, Universidade de Brasília, Campus Universitário Darcy Ribeiro, CEP 70910-900, Brasília-DF, Brazil. Email: [email protected]
Full Professor, Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Avenida Circunvalar sede Vivero UD, Bogotá DC 110131, Colombia. ORCID: https://orcid.org/0000-0003-2946-9411. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Effects of Anhydrous Calcium Sulfate Whisker and Waste Engine Oil on Performance of Asphalt Binder and Its Mixture, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-16488, 36, 2, (2024).
  • Mechanical Resistance of Hot-Mix Asphalt Using Phosphorite as Filler, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-15720, 35, 9, (2023).
  • Pavement Performance Research Progress and Evaluation of Asphalt Mixture Incorporating Iron Ore Tailings, World Journal of Engineering and Technology, 10.4236/wjet.2022.103029, 10, 03, (487-501), (2022).
  • Opportunity Utilization Tailings Waste as Fine Aggregate Material in Asphalt Mixture Performance to Support Sustainable Development Goals (SDGs): A Preliminary Study, Key Engineering Materials, 10.4028/p-tlyq38, 929, (173-180), (2022).
  • Utilization of iron ore tailing as an alternative mineral filler in asphalt mastic: High-temperature performance and environmental aspects, Journal of Cleaner Production, 10.1016/j.jclepro.2021.130318, 335, (130318), (2022).
  • Influence of iron tailing filler on rheological behavior of asphalt mastic, Construction and Building Materials, 10.1016/j.conbuildmat.2022.129047, 352, (129047), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share