Abstract

Phosphorites (PF) have small particle sizes and interesting chemical compositions to be used as filler in asphalt mixtures. The present study assessed the performance that a hot-mix asphalt (HMA) displays when the natural filler (NF) is completely replaced by PF. X-ray diffractometry (XRD), X-ray fluorescence (XRF), and scanning electron microscope (SEM) tests were carried out on NF and PF particles. Asphalt mastic was manufactured using a weight ratio of filler (NF and PF) to asphalt binder of 11.2. Penetration, softening point, viscosity, and linear amplitude sweep test were performed on the asphalt mastic. The following tests were carried out on mixes manufactured with NF (control) and PF (HMA-PF): Marshall, indirect tensile strength, Cantabro, resilient modulus, permanent deformation, and fatigue under stress-controlled mode. Additionally, moisture damage resistance was assessed through the tensile strength ratio (TSR) parameter. The HMA-PF mix displayed a better performance in all the evaluated properties, without increasing the optimum asphalt binder content. PF as fillers could be an interesting alternative in the manufacture of HMA mixtures subjected to high temperature climates.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

Acknowledgments

We thank the participating institutions (Universidad Distrital Francisco José de Caldas, Pontificia Universidad Javeriana, Universidad Militar Nueva Granada, and Universidad Piloto de Colombia) for the support granted to researchers.

References

AASHTO. 1991. Standard method of test for specific gravity and absorption of coarse aggregate. AASHTO T 85. Washington, DC: AASHTO.
AASHTO. 1999. Standard method of test for soundness of aggregate by use of sodium sulfate or magnesium sulfate. AASHTO T 104. Washington, DC: AASHTO.
AASHTO. 2000. Standard method of test for specific gravity and absorption of fine aggregate. AASHTO T 84. Washington, DC: AASHTO.
AASHTO. 2002. Standard method of test for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. AASHTO T 96. Washington, DC: AASHTO.
AASHTO. 2005. Standard method of test for resistance of coarse aggregate to degradation by abrasion in the micro-deval apparatus. AASHTO T 327. Washington, DC: AASHTO.
AASHTO. 2015. Standard method of test for resistance to plastic flow of bituminous mixtures using Marshall apparatus. AASHTO T 245. Washington, DC: AASHTO.
AASHTO. 2018. Standard method of test for resistance of compacted asphalt mixtures to moisture-induced damage. AASHTO TP 283-14. Washington, DC: AASHTO.
AASHTO. 2019. Standard method of test for density of hydraulic cement. AASHTO T 133. Washington, DC: AASHTO.
AASHTO. 2020. Standard method of test for determining the rheological properties of asphalt binder using a ynamic shear rheometer (DSR). AASHTO T 315. Washington, DC: AASHTO.
Aflaki, S., and N. Tabatabaee. 2009. “Proposals for modification of Iranian bitumen to meet the climatic requirements of Iran.” Constr. Build. Mater. 23 (6): 2141–2150. https://doi.org/10.1016/j.conbuildmat.2008.12.014.
ASTM. 1999. Standard test method for ductility of bituminous materials. ASTM D113. West Conshohocken, PA: ASTM.
ASTM. 2000. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318. West Conshohocken, PA: ASTM.
ASTM. 2001. Standard test method for determining the percentage of fractured particles in coarse aggregate. ASTM D5821. West Conshohocken, PA: ASTM.
ASTM. 2006. Standard test method for softening point of bitumen (ring and- ball apparatus). ASTM D36. West Conshohocken, PA: ASTM.
ASTM. 2012. Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test). ASTM D2872-12e1. West Conshohocken, PA: ASTM.
ASTM. 2013. Standard test method for penetration of bituminous materials. ASTM D5/D5M. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. ASTM D4402/D4402M. West Conshohocken, PA: ASTM.
ASTM. 2019. Standard test method for flash point of cutback asphalt with tag open-cup apparatus. ASTM D3143. West Conshohocken, PA: ASTM.
Bastidas-Martínez, J. G., J. Camapum de Carvalho, L. L. Cristhiane, M. Muniz de Farias, and H. A. Rondón-Quintana. 2022. “Effects of iron ore tailing on performance of hot-mix asphalt.” J. Mater. Civ. Eng. 34 (1): 04021405 https://doi.org/10.1061/(ASCE)MT.1943-5533.0004034.
Bastidas-Martínez, J. G., H. A. Rondón-Quintana, and M. Muniz de Farias. 2021. “Behavior of asphalt mastics containing different materials as filler.” Can. J. Civ. Eng. 48 (4): 347–355. https://doi.org/10.1139/cjce-2019-0342.
Bharath, G., K. S. Reddy, V. Tandon, and M. A. Reddy. 2021. “Aggregate gradation effect on the fatigue performance of recycled asphalt mixtures.” Road Mater. Pavement Des. 22 (1): 165–184. https://doi.org/10.1080/14680629.2019.1620116.
Calle, S. M. 2016. Evaluación de la acidulación de roca fosfórica empleando la bacteria acidófila Acidithiobacillus thiooxidans. Medellín: Universidad Nacional de Colombia.
Cheng, Y., J. Tao, Y. Jiao, G. Tan, Q. Guo, S. Wang, and P. Ni. 2016. “Influence of the properties of filler on high and medium temperature performances of asphalt mastic.” Constr. Build. Mater. 118 (Aug): 268–275. https://doi.org/10.1016/j.conbuildmat.2016.05.041.
Cox, B. C., B. T. Smith, I. L. Howard, and R. S. James. 2017. “State of knowledge for Cantabro testing of dense graded asphalt.” J. Mater. Civ. Eng. 29 (10): 04017174 https://doi.org/10.1061/(ASCE)MT.1943-5533.0002020.
Cuadri, A. A., F. J. Navarro, M. García-Moralesa, and J. P. Bolívar. 2014. “Valorization of phosphogypsum waste as asphaltic bitumen modifier.” J. Hazard. Mater. 279 (Aug): 11–16. https://doi.org/10.1016/j.jhazmat.2014.06.058.
Cuadri, A. A., S. Pérez-Moreno, C. L. Altamar, F. J. Navarro, and J. P. Bolívar. 2021. “Phosphogypsum as additive for foamed bitumen manufacturing used in asphalt paving.” J. Cleaner Prod. 283 (Feb): 124661. https://doi.org/10.1016/j.jclepro.2020.124661.
Di Benedetto, H., C. De La Roche, H. Baaj, A. Pronk, and R. Lundström. 2004. “Fatigue of bituminous mixtures.” Mater. Struct. Constr. 37 (3): 202–216. https://doi.org/10.1007/BF02481620.
DNER (Departamento Nacional de Estradas de Rodagem). 1998. Avaliação da resistência mecânica pelo método dos 10% de finos [Evaluation of mechanical resistance to coarse aggregate using 10% method]. DNER-ME 096. Rio de Janeiro, Brazil: Departamento Nacional de Infraestrutura de Transporte.
Doyle, J. D., and I. L. Howard. 2016. “Characterization of dense-graded asphalt with the Cantabro test.” J. Test. Eval. 44 (1): 77–88. https://doi.org/10.1520/JTE20140212.
Elseifi, M. A., G. W. Flintsch, and I. L. Al-Qadi. 2003. “Quantitative effect of elastomeric modification on binder performance at intermediate and high temperatures.” J. Mater. Civ. Eng. 15 (1): 32–40. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(32).
Fosfatos del Huila. 2022. “Ficha Técnica de ‘Fosforita 28P’.” Accessed March 20, 2022. http://fosfatosdelhuila.com/fhportal/descargas/FICHA%20TECNICA%20FOSFORITA%2028P%20V.3%20-%20copia.pdf.
Foxworthy, P. T., R. S. Nadimpalli, and R. K. Seals. 1996. “Phosphogypsum slag aggregate-based asphaltic concrete mixes.” J. Transp. Eng. 122 (4): 300–307. https://doi.org/10.1061/(ASCE)0733-947X(1996)122:4(300).
Ge, D., K. Yan, L. You, and Z. Wang. 2017. “Modification mechanism of asphalt modified with Sasobit and Polyphosphoric acid (PPA).” Constr. Build. Mater. 143 (Jul): 419–428. https://doi.org/10.1016/j.conbuildmat.2017.03.043.
Ghabchi, R., S. Rani, M. Zaman, and S. A. Ali. 2021. “Effect of WMA additive on properties of PPA-modified asphalt binders containing anti-stripping agent.” Int. J. Pavement Eng. 22 (4): 418–431. https://doi.org/10.1080/10298436.2019.1614584.
Guo, M., Y. Tan, A. Bhasin, J. Wei, X. Yang, and Y. Hou. 2016. “Using molecular dynamics to investigate interfacial adhesion between asphalt binder and mineral aggregate.” In Proc., 4th Chinese-European Workshop on Functional Pavement Design (4th CEW 2016), edited by S. Erkens, X. Liu, K. Anupam, and Y. Tan, 517–527. Delft, Netherlands: Taylor & Francis Group.
Hajikarimi, P., F. F. Tehrani, F. M. Nejad, J. Absi, M. Rahi, A. Khodaii, and C. Petit. 2018. “Generalized fractional viscoelastic modeling of low temperature characteristics of asphalt binders modified with polyphosphoric acid and distillate aromatic extracts oil.” J. Mater. Civ. Eng. 30 (7): 04018147 https://doi.org/10.1061/(ASCE)MT.1943-5533.0002353.
Hao, P., R. Zhai, Z. Zhang, and X. Cao. 2019. “Investigation on performance of polyphosphoric acid (PPA)/SBR compound-modified asphalt mixture at high and low temperatures.” Road Mater. Pavement Des. 20 (6): 1376–1390. https://doi.org/10.1080/14680629.2018.1447503.
Hossain, Z., M. S. Alam, and G. Baumgardner. 2020. “Evaluation of rheological performance and moisture susceptibility of polyphosphoric acid modified asphalt binders.” Road Mater. Pavement Des. 21 (1): 237–252. https://doi.org/10.1080/14680629.2018.1483261.
Huang, S., F. P. Miknis, W. Schuster, S. Salmans, M. Farrar, and R. Boysen. 2011. “Rheological and chemical properties of hydrated lime and polyphosphoric acid–modified asphalts with long-term aging.” J. Mater. Civ. Eng. 23 (5): 628–637. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000219.
INVIAS (Instituto Nacional de Vías). 2022. Especificaciones generales de construcción de carreteras. Bogotá, DC, Colombia: INVIAS.
Jafari, M., and A. Babazadeh. 2016. “Evaluation of polyphosphoric acid-modified binders using multiple stress creep and recovery and linear amplitude sweep tests.” Road Mater. Pavement Des. 17 (4): 859–876. https://doi.org/10.1080/14680629.2015.1132631.
Jafari, M., A. A. Nasrekani, M. Nakhaei, and A. Babazadeh. 2017. “Evaluation of rutting resistance of asphalt binders and asphalt mixtures modified with polyphosphoric acid.” Pet. Sci. Technol. 35 (2): 141–147. https://doi.org/10.1080/10916466.2016.1248776.
Jiang, X., P. Li, Z. Ding, L. Yang, and J. Zhao. 2019. “Investigations on viscosity and flow behavior of polyphosphoric acid (PPA) modified asphalt at high temperatures.” Constr. Build. Mater. 228 (Dec): 116610. https://doi.org/10.1016/j.conbuildmat.2019.07.336.
Katamine, N. M. 2000. “Phosphate waste in mixtures to improve their deformation.” J. Transp. Eng. 126 (5): 382–389. https://doi.org/10.1061/(ASCE)0733-947X(2000)126:5(382).
Liang, P., M. Liang, W. Fan, Y. Zhang, C. Qian, and S. Ren. 2017. “Improving thermo-rheological behavior and compatibility of SBR modified asphalt by addition of polyphosphoric acid (PPA).” Constr. Build. Mater. 139 (May): 183–192. https://doi.org/10.1016/j.conbuildmat.2017.02.065.
Liu, H., M. Zhang, Y. Wang, Z. Chen, and P. Hao. 2020. “Rheological properties and modification mechanism of polyphosphoric acid-modified asphalt.” Road Mater. Pavement Des. 21 (4): 1078–1095. https://doi.org/10.1080/14680629.2018.1537931.
Liu, J., K. Yan, and J. Liu. 2018. “Rheological characteristics of polyphosphoric acid–modified asphalt mastic.” J. Mater. Civ. Eng. 30 (12): 06018021 https://doi.org/10.1061/(ASCE)MT.1943-5533.0002555.
Liu, J., K. Yan, L. You, D. Ge, and Z. Wang. 2016. “Laboratory performance of warm mix asphalt binder containing polyphosphoric acid.” Constr. Build. Mater. 106 (Mar): 218–227. https://doi.org/10.1016/j.conbuildmat.2015.12.126.
Ma, F., C. Li, Z. Fu, Y. Huang, J. Dai, and Q. Feng. 2021. “Evaluation of high temperature rheological performance of polyphosphoric acid-SBS and polyphosphoric acid-crumb rubber modified asphalt.” Constr. Build. Mater. 306 (Nov): 124926. https://doi.org/10.1016/j.conbuildmat.2021.124926.
Maghsoodloorad, H., H. Khalili, and A. Allahverdi. 2018. “Alkali-activated phosphorous slag performance under different curing conditions: Compressive strength, hydration products, and microstructure.” J. Mater. Civ. Eng. 30 (1): 04017253 https://doi.org/10.1061/(ASCE)MT.1943-5533.0002101.
Masson, J.-F. 2008. “Brief review of the chemistry of polyphosphoric acid (PPA) and bitumen.” Energy Fuels 22 (4): 2637–2640. https://doi.org/10.1021/ef800120x.
Miknis, F. P., and K. P. Thomas. 2008. “NMR Analysis of polyphosphoric acid-modified bitumens.” Road Mater. Pavement Des. 9 (1): 59–72. https://doi.org/10.1080/14680629.2008.9690107.
Muniandy, R., E. Aburkaba, and R. Taha. 2013. “Effect of mineral filler type and particle size on the engineering properties of stone mastic asphalt pavements.” J. Eng. Res. 10 (2): 13–32. https://doi.org/10.24200/tjer.vol10iss2pp13-32.
Muniz de Farias, M., F. Qui˜nonez-Sinisterra, and H. A. Rondón-Quintana. 2018. “Behavior of a hot-mix asphalt made with recycled concrete aggregate and crumb rubber.” Can. J. Civ. Eng. 70 (Apr): 1–39. https://doi.org/10.1139/cjce-2018-0443.
NLT (Normas del Laboratorio de Transporte). 1988. Método para determinar la variacion de la consistencia del betún asfáltico con los cambios de temperatura (susceptibilidad) [Method to determine the variation in the consistency of asphalt bitumen with temperatura changes (susceptibility)]. Norma NLT-181. Madrid, Spain: NLT.
Orange, G., J. V. Martin, A. Menapace, M. Hemsley, and G. L. Baumgardner. 2004. “Rutting and moisture resistance of asphalt mixtures containing polymer and polyphosphoric acid modified bitumen.” Road Mater. Pavement Des. 5 (3): 323–354. https://doi.org/10.1080/14680629.2004.9689975.
Pasandín, A. R., and I. Pérez. 2015. “The influence of the mineral filler on the adhesion between aggregates and bitumen.” Int. J. Adhes. Adhes. 58 (Apr): 53–58. https://doi.org/10.1016/j.ijadhadh.2015.01.005.
Qian, C., W. Fan, F. Ren, X. Lv, and B. Xing. 2019a. “Influence of polyphosphoric acid (PPA) on properties of crumb rubber (CR) modified asphalt.” Constr. Build. Mater. 227 (Dec): 117094. https://doi.org/10.1016/j.conbuildmat.2019.117094.
Qian, G., S. Bai, S. Ju, and T. Huang. 2013. “Laboratory evaluation on recycling waste phosphorus slag as the mineral filler in hot-mix asphalt.” J. Mater. Civ. Eng. 25 (7): 846–850. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000770.
Qian, G., K. Wang, X. Bai, T. Xiao, D. Jin, and Q. Huang. 2018. “Effects of surface modified phosphate slag powder on performance of asphalt and asphalt mixture.” Constr. Build. Mater. 158 (Apr): 1081–1089. https://doi.org/10.1016/j.conbuildmat.2017.09.123.
Qian, G., H. Yu, X. Gong, and W. Zheng. 2019b. “Effect of phosphorus slag powder on flammability properties of asphalt.” J. Mater. Civ. Eng. 31 (11): 04019280 https://doi.org/10.1061/(ASCE)MT.1943-5533.0002951.
Rojas, P. A. 2022. Identificación de cadmio (Cd) soluble en rocas fosfóricas y su relación con diversas propiedades encontradas sobre yacimientos empleados para la producción de fertilizantes de la Cordillera Oriental. Medellín, Colombia: Trabajo de grado, Geología, Departamento de Ciencias de la Tierra, Universidad EAFIT.
Rondón-Quintana, H. A., F. A. Reyes-Lizcano, and C. A. Zafra-Mejía. 2021. “Fatigue in asphalt mixtures—A summary to understand the complexity of its mathematical modeling.” J. Phys. Conf. Ser. 2118 (1): 012009. https://doi.org/10.1088/1742-6596/2118/1/012009.
Rondón-Quintana, H. A., J. C. Ruge-Cárdenas, J. G. Bastidas-Martínez, M. Y. Velandia-Castelblanco, and M. Muniz de Farias. 2020. “Use of thermally treated bentonite as filler in hot mix asphalt.” J. Mater. Civ. Eng. 32 (5): 04020070 https://doi.org/10.1061/(ASCE)MT.1943-5533.0003127.
Rondón-Quintana, H. A., J. C. Ruge-Cárdenas, and M. Muniz de Farias. 2019. “Behavior of hot-mix asphalt containing blast furnace slag as aggregate: Evaluation by mass and volume substitution.” J. Mater. Civ. Eng. 31 (2): 04018364 https://doi.org/10.1061/(ASCE)MT.1943-5533.0002574.
Rondón-Quintana, H. A., J. C. Ruge-Cárdenas, D. F. Patiño-Sánchez, H. A. Vacca-Gamez, F. A. Reyes-Lizcano, and M. Muniz de Farias. 2018. “Blast furnace slag as a substitute for the fine fraction of aggregates in an asphalt mixture.” J. Mater. Civ. Eng. 30 (10): 04018244 https://doi.org/10.1061/(ASCE)MT.1943-5533.0002409.
Ruiz-Ibarra, J. F., H. A. Rondón-Quintana, and S. Chavez-Pabón. 2020. “Behavior of a warm mix asphalt containing a blast furnace slag.” Int. J. Civ. Eng. 18: 325–334. https://doi.org/10.1007/s40999-019-00475-6.
Seyedmajidi, S., and M. Seyedmajidi. 2022. “Fluorapatite: A review of synthesis, properties and medical applications vs hydroxyapatite.” Iran. J. Mater. Sci. Eng. 19 (2): 1–20. https://doi.org/10.22068/ijmse.2430.
Sheng, Y., B. Zhang, Y. Yan, H. Chen, R. Xiong, and J. Geng. 2017. “Effects of phosphorus slag powder and polyester fiber on performance characteristics of asphalt binders and resultant mixtures.” Constr. Build. Mater. 141 (Jun): 289–295. https://doi.org/10.1016/j.conbuildmat.2017.02.141.
Sobhi, S., A. Yousefi, and A. Behnood. 2020. “The effects of Gilsonite and Sasobit on the mechanical properties and durability of asphalt mixtures.” Constr. Build. Mater. 238 (Mar): 117676. https://doi.org/10.1016/j.conbuildmat.2019.117676.
Song, R., A. Sha, K. Shi, J. Li, X. Li, and F. Zhang. 2021. “Polyphosphoric acid and plasticizer modified asphalt: Rheological properties and modification mechanism.” Constr. Build. Mater. 309 (Nov): 125158. https://doi.org/10.1016/j.conbuildmat.2021.125158.
Teltayev, B., and B. Radovskiy. 2018. “Predicting thermal cracking of asphalt pavements from bitumen and mix properties.” Road Mater. Pavement Des. 19 (8): 1832–1847. https://doi.org/10.1080/14680629.2017.1350598.
TxDOT. 2021. Test Procedure for Cantabro loss. Tex-245-F. Austin, TX: Dept. of Transportation.
UNE-EN. 2019a. Bituminous mixtures—Test methods—Part 24: Resistance to fatigue. UNE-EN 12697-24:2019. Madrid, Spain: 1NLT.
UNE-EN. 2019b. Bituminous mixtures—Test methods—Part 25: Cyclic compression test. UNE-EN 12697-25:2019. Madrid, Spain: 1NLT.
UNE-EN. 2019c. Bituminous mixtures—Test methods—Part 26: Stiffness. UNE-EN 12697-26:2019. Madrid, Spain: 1NLT.
Xie, J., S. Wu, J. Lin, J. Cai, Z. Chen, and W. Wei. 2012. “Recycling of basic oxygen furnace slag in asphalt mixture: Material characterization & moisture damage investigation.” Constr. Build. Mater. 36 (Nov): 467–474. https://doi.org/10.1016/j.conbuildmat.2012.06.023.
Yu, H., S. Li, G. Qian, X. Gong, and K. Wang. 2020a. “Experiment evaluation on the surface treatment of phosphorus slag (PS) micropowder for asphalt modification.” Constr. Build. Mater. 262 (Nov): 119931. https://doi.org/10.1016/j.conbuildmat.2020.119931.
Yu, H., X. Zhu, G. Qian, X. Gong, and X. Nie. 2020b. “Evaluation of phosphorus slag (PS) content and particle size on the performance modification effect of asphalt.” Constr. Build. Mater. 256 (Sep): 119334. https://doi.org/10.1016/j.conbuildmat.2020.119334.
Ziari, M. A., P. Hajikarimi, A. K. Kazerooni, F. M. Nejad, and E. H. Fini. 2021. “Effect of polyphosphoric acid on fracture properties of asphalt binder and asphalt mixtures.” Constr. Build. Mater. 310 (Dec): 125240. https://doi.org/10.1016/j.conbuildmat.2021.125240.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 9September 2023

History

Received: Sep 29, 2022
Accepted: Jan 30, 2023
Published online: Jun 17, 2023
Published in print: Sep 1, 2023
Discussion open until: Nov 17, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Hugo Alexander Rondón-Quintana, Ph.D. https://orcid.org/0000-0003-2946-9411 [email protected]
Full Professor, Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Carrera 5 Este No. 15-82, Bogotá, DC 110131, Colombia (corresponding author). ORCID: https://orcid.org/0000-0003-2946-9411. Email: [email protected]; [email protected]
Juan Carlos Ruge-Cárdenas, Ph.D. [email protected]
Associate Professor, Civil Engineering Program, Faculty of Engineering, Universidad Militar Nueva Granada, Carrera 11 No. 101-80, Bogotá, DC 111071, Colombia. Email: [email protected]
Fredy Alberto Reyes-Lizcano, Ph.D. [email protected]
Full Professor, Dept. of Civil Engineering, Faculty of Engineering, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Bogotá, DC 110231, Colombia. Email: [email protected]
Juan Gabriel Bastidas-Martínez, Ph.D. [email protected]
Associate Professor, Civil Engineering Program, Faculty of Engineering, Universidad Piloto de Colombia, Carrera 9 No. 45A-44, Bogotá, DC 110231, Colombia. Email: [email protected]
Carlos Alfonso Zafra-Mejía, Ph.D. [email protected]
Full Professor, Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Carrera 5 Este No. 15-82, Bogotá, DC 110131, Colombia. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share