Technical Papers
Aug 25, 2021

Passivation and Chloride-Induced Corrosion Behavior of Aluminum Alloys in Pore Solution of Portland Cement Paste

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 11

Abstract

The passivation and chloride-induced corrosion behavior of aluminum alloys (AAs) 2014, 5083, and 6061, as a key component in aluminum alloy–concrete composite, were investigated in a pore solution of portland cement paste via electrochemical methods, scanning electron microscopy (SEM), and Raman spectroscopy. Results show that AA6061 presents the highest corrosion resistance due to the formation of uniform α-Al(OH)3 layer on both aluminum matrix and intermetallic phases. AA6061 shows the highest chloride threshold value while exhibiting the lowest corrosion resistance when chloride concentration is above the threshold. Different mechanisms of protection and chloride-induced corrosion for the three aluminum alloys in pore solution are proposed.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (51678144) and the National Basic Research Program of China (2015CB655100).

References

Abdel-Gaber, A. M., E. Khamis, H. Abo-Eldahab, and S. Adeel. 2010. “Novel package for inhibition of aluminium corrosion in alkaline solutions.” Mater. Chem. Phys. 124 (1): 773–779. https://doi.org/10.1016/j.matchemphys.2010.07.059.
Abdel-Gaber, A. M., E. Khamis, H. Abo-ElDahab, and S. Adeel. 2008. “Inhibition of aluminium corrosion in alkaline solutions using natural compound.” Mater. Chem. Phys. 109 (2): 297–305. https://doi.org/10.1016/j.matchemphys.2007.11.038.
Andrade, C., and C. Alonso. 2004. “Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method.” Mater. Struct. 37 (9): 623–643. https://doi.org/10.1007/BF02483292.
Armstrong, R. D., and V. J. Braham. 1996. “The mechanism of aluminium corrosion in alkaline solutions.” Corros. Sci. 38 (9): 1463–1471. https://doi.org/10.1016/0010-938X(96)00037-6.
Cao, Y., C. Gehlen, U. Angst, L. Wang, Z. Wang, and Y. Yao. 2019. “Critical chloride content in reinforced concrete—An updated review considering Chinese experience.” Cem. Concr. Res. 117 (Mar): 58–68. https://doi.org/10.1016/j.cemconres.2018.11.020.
Cherif, R., A. A. Hamami, A. Aït-Mokhtar, and J. F. Meusnier. 2017. “Study of the pore solution and the microstructure of mineral additions blended cement pastes.” Energy Procedia 139 (Dec): 584–589. https://doi.org/10.1016/j.egypro.2017.11.257.
Donatus, U., G. E. Thompson, J. A. Omotoyinbo, K. K. Alaneme, S. Aribo, and O. G. Agbabiaka. 2017. “Corrosion pathways in aluminium alloys.” Trans. Nonferrous Met. Soc. China 27 (1): 55–62. https://doi.org/10.1016/S1003-6326(17)60006-2.
Duffó, G. S., S. B. Farina, and F. M. S. Rodríguez. 2019. “Corrosion behaviour of non-ferrous metals embedded in mortar.” Constr. Build. Mater. 210 (Jun): 548–554. https://doi.org/10.1016/j.conbuildmat.2019.03.208.
Engler, O., C. D. Marioara, T. Hentschel, and H.-J. Brinkman. 2017. “Influence of copper additions on materials properties and corrosion behaviour of Al–Mg alloy sheet.” J. Alloys Compd. 710 (Jul): 650–662. https://doi.org/10.1016/j.jallcom.2017.03.298.
Ezuber, H., A. El-Houd, and F. El-Shawesh. 2008. “A study on the corrosion behavior of aluminum alloys in seawater.” Mater. Des. 29 (4): 801–805. https://doi.org/10.1016/j.matdes.2007.01.021.
Feng, X., Y. Tang, and Y. Zuo. 2011. “Influence of stress on passive behaviour of steel bars in concrete pore solution.” Corros. Sci. 53 (4): 1304–1311. https://doi.org/10.1016/j.corsci.2010.12.030.
Ghanem, M. A., and G. El-Enany. 2016. “Development of conducting poly (o-aminophenol) film and its capacitance behavior.” Int. J. Electrochem. Sci. 11 (Dec): 9987–9997. https://doi.org/10.20964/2016.12.68.
Guo, X., L. Tao, S. Zhu, and S. Zong. 2020. “Experimental investigation of mechanical properties of aluminum alloy at high and low temperatures.” J. Mater. Civ. Eng. 32 (2): 06019016. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003002.
Gupta, R. K., N. L. Sukiman, K. M. Fleming, M. A. Gibson, and N. Birbilis. 2012. “Electrochemical behavior and localized corrosion associated with Mg2Si particles in Al and Mg alloys.” ECS Electrochem. Lett. 1 (1): C1–C3. https://doi.org/10.1149/2.002201eel.
Huang, J., X. Liu, E.-H. Han, and X. Wu. 2011. “Influence of Zn on oxide films on Alloy 690 in borated and lithiated high temperature water.” Corros. Sci. 53 (10): 3254–3261. https://doi.org/10.1016/j.corsci.2011.06.001.
Huang, Y., Y. Li, Z. Xiao, Y. Liu, Y. Huang, and X. Ren. 2016. “Effect of homogenization on the corrosion behavior of 5083-H321 aluminum alloy.” J. Alloys Compd. 673 (Jul): 73–79. https://doi.org/10.1016/j.jallcom.2016.02.228.
Huang, Y., S. Mu, Q. Guan, and J. Du. 2019. “Corrosion resistance and formation analysis of a molybdate conversion coating prepared by alkaline treatment on aluminum alloy 6063.” J. Electrochem. Soc. 166 (8): C224–C230. https://doi.org/10.1149/2.1111908jes.
Jüttner, K. 1990. “Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces.” Electrochim. Acta 35 (10): 1501–1508. https://doi.org/10.1016/0013-4686(90)80004-8.
Liang, W. J., P. A. Rometsch, L. F. Cao, and N. Birbilis. 2013. “General aspects related to the corrosion of 6xxx series aluminium alloys: Exploring the influence of Mg/Si ratio and Cu.” Corros. Sci. 76 (Nov): 119–128. https://doi.org/10.1016/j.corsci.2013.06.035.
Linardi, E., R. Haddad, and L. Lanzani. 2012. “Stability analysis of the Mg2Si phase in AA6061 aluminum alloy.” Procedia Mater. Sci. 1 (Jan): 550–557. https://doi.org/10.1016/j.mspro.2012.06.074.
Liu, L., Y. Jia, J. Jiang, B. Zhang, G. Li, W. Shao, and L. Zhen. 2019. “The effect of Cu and Sc on the localized corrosion resistance of Al-Zn-Mg-X alloys.” J. Alloys Compd. 799 (Aug): 1–14. https://doi.org/10.1016/j.jallcom.2019.05.189.
Liu, M., S. Zanna, H. Ardelean, I. Frateur, P. Schmutz, G. Song, A. Atrens, and P. Marcus. 2009. “A first quantitative XPS study of the surface films formed, by exposure to water, on Mg and on the Mg–Al intermetallics: Al3Mg2 and Mg17Al12.” Corros. Sci. 51 (5): 1115–1127. https://doi.org/10.1016/j.corsci.2009.02.017.
Łukasz, P., and S. Maciej. 2015. “A numerical analysis of the resistance and stiffness of the aluminium and concrete composite beam.” Civ. Environ. Eng. Rep. 15 (4): 99–112. https://doi.org/10.1515/ceer-2014-0037.
Luo, C., S. P. Albu, X. Zhou, Z. Sun, X. Zhang, Z. Tang, and G. E. Thompson. 2016. “Continuous and discontinuous localized corrosion of a 2xxx aluminium–copper–lithium alloy in sodium chloride solution.” J. Alloys Compd. 658 (Feb): 61–70. https://doi.org/10.1016/j.jallcom.2015.10.185.
Lyndon, J. A., R. K. Gupta, M. A. Gibson, and N. Birbilis. 2013. “Electrochemical behaviour of the β-phase intermetallic (Mg2Al3) as a function of pH as relevant to corrosion of aluminium–magnesium alloys.” Corros. Sci. 70 (May): 290–293. https://doi.org/10.1016/j.corsci.2012.12.022.
Maldonado, L., O. Quiroz-Zavala, and L. Díaz-Ballote. 2010. “Bond between galvanized steel and concrete prepared with limestone aggregates.” Anti-Corros. Methods Mater. 57 (6): 305–313. https://doi.org/10.1108/0003559 6951011087163.
Mazhar, A. A., S. T. Arab, and E. A. Noor. 2001. “The role of chloride ions and pH in the corrosion and pitting of Al–Si alloys.” J. Appl. Electrochem. 31 (10): 1131–1140. https://doi.org/10.1023/A:1012039804089.
Morgado, E., Y. L. Lam, and L. F. Nazar. 1997. “Formation of peptizable boehmites by hydrolysis of aluminum nitrate in aqueous solution.” J. Colloid Interface Sci. 188 (2): 257–269. https://doi.org/10.1006/jcis.1997.4780.
Mrema, E., Y. Itoh, A. Kaneko, and M. Hirohata. 2018. “Corrosion of aluminium alloy A6061-T6 members embedded in alkaline materials.” Corros. Eng. Sci. Technol. 53 (2): 102–113. https://doi.org/10.1080/1478422X.2017.1402499.
Nogueira, C. L. 2017. “Ultrasonic evaluation of acoustoelastic parameters in aluminum.” J. Mater. Civ. Eng. 29 (10): 04017158. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002009.
Osório, W. R., C. M. Freire, and A. Garcia. 2005. “The role of macrostructural morphology and grain size on the corrosion resistance of Zn and Al castings.” Mater. Sci. Eng., A 402 (1): 22–32. https://doi.org/10.1016/j.msea.2005.02.094.
Plusquellec, G., M. R. Geiker, J. Lindgård, J. Duchesne, B. Fournier, and K. De Weerdt. 2017. “Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison.” Cem. Concr. Res. 96 (Jun): 13–26. https://doi.org/10.1016/j.cemconres.2017.03.002.
Poursaee, A., and C. M. Hansson. 2007. “Reinforcing steel passivation in mortar and pore solution.” Cem. Concr. Res. 37 (7): 1127–1133. https://doi.org/10.1016/j.cemconres.2007.04.005.
Ruan, H. D., R. L. Frost, and J. T. Kloprogge. 2001. “Comparison of Raman spectra in characterizing gibbsite, bayerite, diaspore and boehmite.” J. Raman Spectrosc. 32 (9): 745–750. https://doi.org/10.1002/jrs.736.
Schöler, A., B. Lothenbach, F. Winnefeld, M. B. Haha, M. Zajac, and H.-M. Ludwig. 2017. “Early hydration of SCM-blended Portland cements: A pore solution and isothermal calorimetry study.” Cem. Concr. Res. 93 (Mar): 71–82. https://doi.org/10.1016/j.cemconres.2016.11.013.
Setiadi, A., N. B. Milestone, J. Hill, and M. Hayes. 2006. “Corrosion of aluminium and magnesium in BFS composite cements.” Adv. Appl. Ceram. 105 (4): 191–196. https://doi.org/10.1179/174367606X120142.
Sharma, M. M., J. D. Tomedi, and J. M. Parks. 2015. “A microscopic study on the corrosion fatigue of ultra-fine grained and conventional Al–Mg alloy.” Corros. Sci. 93 (Apr): 180–190. https://doi.org/10.1016/j.corsci.2015.01.020.
Siwowski, T. 2006. “Aluminium bridges–past, present and future.” Struct. Eng. Int. 16 (4): 286–293. https://doi.org/10.2749/101686606778995137.
Szumigała, M., and Ł. Polus. 2015. “Applications of aluminium and concrete composite structures.” Procedia Eng. 108 (Jan): 544–549. https://doi.org/10.1016/j.proeng.2015.06.176.
Szumigała, M., and Ł. Polus. 2017. “An numerical simulation of an aluminium-concrete beam.” Procedia Eng. 172 (Jan): 1086–1092. https://doi.org/10.1016/j.proeng.2017.02.167.
Tan, L., and T. R. Allen. 2010. “Effect of thermomechanical treatment on the corrosion of AA5083.” Corros. Sci. 52 (2): 548–554. https://doi.org/10.1016/j.corsci.2009.10.013.
Tittarelli, F., A. Mobili, C. Giosuè, A. Belli, and T. Bellezze. 2018. “Corrosion behaviour of bare and galvanized steel in geopolymer and Ordinary Portland Cement based mortars with the same strength class exposed to chlorides.” Corros. Sci. 134 (Apr): 64–77. https://doi.org/10.1016/j.corsci.2018.02.014.
Xing, G., and O. E. Ozbulut. 2016. “Flexural performance of concrete beams reinforced with aluminum alloy bars.” Eng. Struct. 126 (Nov): 53–65. https://doi.org/10.1016/j.engstruct.2016.07.032.
Yasakau, K. A., M. L. Zheludkevich, S. V. Lamaka, and M. G. S. Ferreira. 2007. “Role of intermetallic phases in localized corrosion of AA5083.” Electrochim. Acta 52 (27): 7651–7659. https://doi.org/10.1016/j.electacta.2006.12.072.
Zhu, Y., K. Sun, and G. S. Frankel. 2018. “Intermetallic phases in aluminum alloys and their roles in localized corrosion.” J. Electrochem. Soc. 165 (11): C807–C820. https://doi.org/10.1149/2.0931811jes.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 11November 2021

History

Received: Aug 4, 2020
Accepted: Mar 10, 2021
Published online: Aug 25, 2021
Published in print: Nov 1, 2021
Discussion open until: Jan 25, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Danqian Wang [email protected]
Researcher, School of Materials Science and Engineering, Southeast Univ., Nanjing 211189, China. Email: [email protected]
Postgraduate Student, School of Materials Science and Engineering, Southeast Univ., Nanjing 211189, China. Email: [email protected]
Ph.D. Student, School of Materials Science and Engineering, Southeast Univ., Nanjing 211189, China. Email: [email protected]
Associate Professor, Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast Univ., Nanjing 211189, China (corresponding author). ORCID: https://orcid.org/0000-0003-2814-3487. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share