Abstract

The mechanical and thermal properties of clay bricks are important parameters that influence the durability and energy consumption of building bricks in service. This study investigates the influence of waste glass when combined with coconut shells on the properties of burnt bricks. Particulate coconut shell (PCS) of 75  μm was added to Orita-Obele clay at a varied proportion of clay (0%–2%), while waste glass (75  μm) was utilized at a constant proportion (25% by weight of clay). The physical, mechanical, and thermal properties of the samples were evaluated as well as efflorescence. The surface morphology of each weight fraction was examined under a scanning electron microscope. From the results obtained, the samples evaluated exhibited reduced porosity, water absorption, initial rate of suction, efflorescence, and wear characteristics. Moreover, the linear shrinkage, bulk density, compressive strength, modulus of rupture, hardness, and thermal conductivity were observed to increase with the addition of waste glass and particulate coconut shell. All samples produced satisfied the minimum strength requirement for masonry application. Hence, PCS and waste glass can be combined in the production of fired masonry bricks.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code used during the study appear in the published article.

Acknowledgments

The authors acknowledge the Department of Metallurgical and Materials Engineering, Federal University of Technology, Akure; Ceramics and Glass Laboratory, Federal Polytechnic, Ado-Ekiti; and Landmark University Center for Research, Innovation, and Development (LUCRID), through SDGs 9 Research Group, Industry, Innovation and Infrastructure.

References

Abdeen, H., and S. Shihada. 2017. “Properties of fired clay bricks mixed with waste glass.” J. Sci. Res. Rep. 13 (4): 1–9. https://doi.org/10.9734/JSRR/2017/32174.
Abdul Kadir, A., and A. Mohajerani. 2015. “Effect of heating rate on gas emissions and properties of fired clay bricks and fired clay bricks incorporated with cigarette butts.” Appl. Clay Sci. 104 (Feb): 269–276. https://doi.org/10.1016/j.clay.2014.12.005.
Adazabra, A. N., G. Viruthagiri, and P. Kannan. 2017. “Influence of spent shea waste addition on the technological properties of fired clay bricks.” J. Build. Eng. 11 (May): 166–177. https://doi.org/10.1016/j.jobe.2017.04.006.
Adediran, A. A., O. A. Balogun, A. A. Akinwande, O. S. Adesina, and O. S. Olasoju. 2020. “Influence of chemical treatment on the properties of cement-paper hybrid composites for ceiling board application.” Heliyon 6 (7): e04512. https://doi.org/10.1016/j.heliyon.2020.e04512.
Agbede, I., and M. Joel. 2011. “Effect of rice husk ash (RHA) on the properties of Ibaji burnt clay bricks.” Am. J. Sci. Indus. Res. 2 (4): 674–677. https://doi.org/10.5251/ajsir.2011.2.4.674.677.
Akinwande, A. A., A. A. Adediran, O. A. Balogun, O. Bello, A. Barnabas, O. P. Balogun, and O. S. Adesina. 2020. “Evaluation of the influence of waste glass powder (WGP) on the thermo-mechanical performance of fired ceramics.” Acta Metallurgica Slovaca 26 (3): 84–94. https://doi.org/10.36547/ams.26.3.605.
Al-Amaireh, M. 2006. “Improving the physical and thermal properties of the fire clay refractory bricks produced from bauxite.” J. Appl. Sci. 6 (12): 2605–2610. https://doi.org/10.3923/jas.2006.2605.2610.
Al-Fakih, A., B. Mohammed, M. S. Liew, and W. S. Alaloul. 2018. “Physical properties of rubberized interlocking masonry bricks.” Int. J. Civ. Eng. Technol. 9 (6): 656–664.
Aouba, L., C. Bories, M. Coutand, B. Perrin, and H. Lemercier. 2016. “Properties of fired clay bricks with incorporated biomasses: Cases of olive stone flour and wheat straw residues.” Constr. Build. Mater. 102 (Jan): 7–13. https://doi.org/10.1016/j.conbuildmat.2015.10.040.
Aouba, L., M. Coutand, B. Perrin, and H. Lemercier. 2015. “Predicting thermal performance of fired clay bricks lightened by adding organic matter: Improvement of brick geometry.” J. Build. Phys. 38 (6): 531–547. https://doi.org/10.1177/1744259115571078.
Aramide, F. O. 2012. “Production and characterization of porous insulating fired bricks from ifon clay with varied sawdust admixture.” J. Miner. Mater. Charact. Eng. 11 (10): 970–975. https://doi.org/10.4236/jmmce.2012.1110097.
Areias, I. O. R., C. M. F. Viera, H. A. Colorado, C. G. Delaquag, A. R. G. Azevedo, and S. N. Monteiro. 2020. “Could city sewage sludge be directly used into clay bricks for building construction? A comprehensive case study from Brazil.” J. Build. Eng. 31 (Sep): 101374. https://doi.org/10.j.jobe.2020.101374.
Aripin, H., S. Mitsudo, B. Rahmat, S. Tani, K. Sako, Y. Fujii, K. Kikuchi, T. Saito, T. Idehara, and S. Sabchevski. 2014. “Formation of porous clay ceramic using sago waste ash as a prospective additive material with controllable milling.” Sci. Sinter. 46 (1): 55–64. https://doi.org/10.2298/SOS1401055A.
AS/NZS (Australian/New Zealand Standard). 1997. Masonry units and segmental pavers—Methods of test method determining initial rate of absorption (suction). Wellington, New Zealand: AS/NZS.
ASTM. 2006. Standard test method for water absorption, bulk density, apparent porosity and apparent specific gravity of fired white ware products. West Conshohocken, PA: ASTM.
ASTM. 2007. Standard test method for sampling and testing bricks and structural clay tile. West Conshohocken, PA: ASTM.
ASTM. 2012. Standard test methods for testing abrasion resistance of horizontal concrete surfaces. West Conshohocken, PA: ASTM.
ASTM. 2013. Standard test method for thermal conductivity of solids using guarded–comparative–longitudinal heat flow technique. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test method for drying and firing shrinkage of ceramic whiteware clays. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test methods for flexural strength of masonry bricks (using simple beam with centre-point loading). West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard specification for building brick (solid masonry units made from clay or shale). West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test method for liquid limit, plastic limit and plastic index of soils. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard test methods for particle size distribution (radiation) of soils using sieve analysis. West Conshohocken, PA: ASTM.
ASTM. 2018. Standard test methods for compressive strength of masonry prisms. West Conshohocken, PA: ASTM.
ASTM. 2019. Standard test methods for Vickers indentation of advanced ceramics. West Conshohocken, PA: ASTM.
Azevedo, A. R. G., D. Cecchin, D. F. Carmo, F. C. Silva, C. M. O. Campos, M. T. Marvila, and S. N. Monteiro. 2020a. “Analysis of the compactness and properties of the hardened state of mortars with recycling of construction and demolition waste (CDW).” J. Mater. Res. Technol. 9 (3): 5942–5952. https://doi.org/10.1016/j.jmrt.2020.03.122.
Azevedo, A. R. G., M. T. Marvila, H. A. Rocha, L. R. Cruz, and M. C. F. Viera. 2020b. “Use of glass polishing waste in the development of ecological ceramic roof tiles by the geopolymerization process.” Appl. Ceram. Technol. 17 (6): 2649–2658. https://doi.org/10.1111/ijac.13585.
Azevedo, A. R. G., M. T. Marvila, B. A. Tayeh, D. Cecchin, A. C. Pereira, and S. N. Monteiro. 2020c. “Technological performance of acai natural fiber reinforced cement-based mortars.” J. Build. Eng. 33 (Jan): 101675. https://doi.org/j.jobe.2020.101675.
Bakar, B. H. A., S. Saari, and N. A. Surip. 2017. “Water absorption characteristic of interlocking compressed earth brick units.” In Proc., AIP Conf. College Park, MD: American Institute of Physics.
Balog, A.-A., N. Cobîrzan, G. Thalmaier, H. Constantinescu, and M. Voinea. 2019. “Psyllium seeds used as pore forming agent in clay bricks.” Procedia Manuf. 32 (Jan): 242–247. https://doi.org/10.1016/j.promfg.2019.02.209.
Balogun, O. A., A. A. Akinwande, A. A. Adediran, P. P. Ikubanni, S. A. Shittu, and O. S. Adesina. 2021. “Experimental study on the properties of fired sand–clay ceramic products for masonry applications.” J. Mater. Civ. Eng. 33 (2): 04020445. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003532.
Barbieri, L., F. Andreola, I. Lancellotti, and R. Taurino. 2013. “Management of agricultural biomass wastes: Preliminary study on characterization and valorisation in clay matrix bricks.” Waste Manage. 33 (11): 2307–2315. https://doi.org/10.1016/j.wasman.2013.03.014.
Basegio, T., F. Berutti, A. Bernardes, and C. P. Bergmann. 2002. “Environmental and technical aspects of the utilisation of tannery sludge as a raw material for clay products.” J. Eur. Ceram. Soc. 22 (13): 2251–2259. https://doi.org/10.1016/S0955-2219(02)00024-9.
Başpınar, M. S., E. Kahraman, G. Görhan, and İ. Demir. 2009. “Production of fired construction brick from high sulfate-containing fly ash with boric acid addition.” Waste Manage. Res. 28 (1): 4–10. https://doi.org/10.1177/0734242x08096529.
Benlalla, A., M. Elmoussaouiti, M. Dahhou, and M. Assafi. 2015. “Utilization of water treatment plant sludge in structural ceramics bricks.” Appl. Clay Sci. 11 (Dec): 171–177. https://doi.org/10.1016/j.clay.2015.09.012.
BIS (Bureau of Indian Standards). 1970. Specification for coarse and fine aggregates from natural sources for concrete. New Delhi, India: Bureau of Indian Standards.
BIS (Bureau of Indian Standards). 1980. Method of test for soil. New Delhi, India: Bureau of Indian Standards.
BIS (Bureau of Indian Standards). 1992. Methods of test of burnt clay building bricks: Determination of efflorescence. New Delhi, India: Bureau of Indian Standards.
British Standard. 1985. British standard specification. London: British Standard.
British Standard. 1990. Methods of test for soils for civil engineering purpose. London: British Standard.
Bullibabu, K., M. Abid Ali, and K. Veeranjaneyulu. 2018. “Characterization and production of thermal insulating fired clay bricks with admixture of bagasse and palmyra fruit fiber.” Mater. Today Proc. 5 (2): 6973–6980. https://doi.org/10.1016/j.matpr.2017.11.360.
Burile, A. N., A. Haldar, A. R. Chaudhari, and A. M. Sorte. 2020. “Utilisation of agro waste in the development of fired clay bricks—A review.” Int. J. Environ. Waste Manage. 26 (4): 531. https://doi.org/10.1504/IJEWM.2020.10029146.
Chen, Y., Y. Zhang, T. Chen, Y. Zhao, and S. Bao. 2011. “Preparation of eco-friendly construction bricks from hematite tailings.” Constr. Build. Mater. 25 (4): 2107–2111. https://doi.org/10.1016/j.conbuildmat.2010.11.025.
Dai, Z., Y. Wu, L. Hu, W. Zhang, and L. Mao. 2019. “Evaluating physical-mechanical properties and long periods environmental risk of fired clay bricks incorporated with electroplating sludge.” Constr. Build. Mater. 227 (Dec): 116716. https://doi.org/10.1016/j.conbuildmat.2019.116716.
Demir, I. 2008. “Effect of organic residues addition on the technological properties of clay bricks.” Waste Manage. 28 (3): 622–627. https://doi.org/10.1016/j.wasman.2007.03.019.
Demir, I. 2009. “Reuse of waste glass in building brick production.” Waste Manage. Res. 27 (6): 572–577. https://doi.org/10.1177/0734242X08096528.
Demir, I., M. Serhat-Baspınar, and M. Orhan. 2005. “Utilization of kraft pulp production residues in clay brick production.” Build. Environ. 40 (11): 1533–1537. https://doi.org/10.1016/j.buildenv.2004.11.021.
Dondi, M., G. Guarini, M. Raimondo, and C. Zanelli. 2009. “Recycling PC and TV waste glass in clay bricks and roof tiles.” Waste Manage. 29 (6): 1945–1951. https://doi.org/10.1016/j.wasman.2008.12.003.
Elakhame, Z. U., F. Ifebhor, and W. A. Asotah. 2016. “Development and production of ceramic tiles from waste bottle powder (milled glass).” Kathmandu Univ. J. Sci. Eng. Technol. 12 (2): 50–59. https://doi.org/10.3126/kuset.v12i2.21521.
Elert, K., G. Cultrone, C. R. Navarro, and E. S. Pardo. 2003. “Durability of bricks used in the conservation of historic buildings—Influence of composition and microstructure.” J. Cult. Heritage 4 (2): 91–99. https://doi.org/10.1016/S1296-2074(03)00020-7.
Eliche-Quesada, D., F. J. Iglesias-Godino, L. Pérez-Villarejo, and F. A. Corpas-Iglesias. 2014. “Replacement of the mixing fresh water by wastewater olive oil extraction in the extrusion of ceramic bricks.” Constr. Build. Mater. 68 (Oct): 659–666. https://doi.org/10.1016/j.conbuildmat.2014.07.017.
Eliche-Quesada, D., and J. Leite-Costa. 2016. “Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks.” Waste Manage. 48 (Feb): 323–333. https://doi.org/10.1016/j.wasman.2015.11.042.
Eliche-Quesada, D., C. Martínez-García, M. L. Martínez-Cartas, M. T. Cotes-Palomino, L. Pérez-Villarejo, N. Cruz-Pérez, and F. A. Corpas-Iglesias. 2011. “The use of different forms of waste in the manufacture of ceramic bricks.” Appl. Clay Sci. 52 (3): 270–276. https://doi.org/10.1016/j.clay.2011.03.003.
Faria, K. C. P., and J. N. F. Holanda. 2013. “Incorporation of sugarcane bagasse ash waste as an alternative raw material for red ceramic.” Cerâmica 59 (351): 473–480. https://doi.org/10.1590/s0366-69132013000300019.
Fernandes, F. M. 2019. “Clay bricks.” In Woodhead publishing series in civil and structural engineering, long-term performance and durability of masonry structures, 3–19. Cambridge, UK: Woodhead Publishing.
Folorunso, D. O., F. O. Aramide, P. Olubambi, and J. O. Borode. 2015. “The effects of firing temperatures on the performance of insulating firebricks containing different proportions of alumina and sawdust.” J. Miner. Mater. Charact. Eng. 3 (4): 309–317. https://doi.org/10.4236/jmmce.2015.34033.
Gencel, O. 2015. “Characteristics of fired clay bricks with pumice additive.” Energy Build. 102 (Sep): 217–224. https://doi.org/10.1016/j.enbuild.2015.05.031.
Gencel, O., E. Erdugmus, M. Sutcu, and O. H. Oren. 2020. “Effects of concrete waste on characteristics of structural fired clay bricks.” Constr. Build. Mater. 255 (Sep): 119362. https://doi.org/10.1016/j.conbuildmat.2020.119362.
Girondi, G. D., M. M. Marvila, A. R. G. Azevedo, C. C. de Souza, D. Souza, J. de Brito, and M. C. F. Viera. 2020. “Recycling potential of powdered cigarette waste in the development of ceramic materials.” J. Mater. Cycle Waste Manage. 22 (Sep): 1672–1681. https://doi.org/10.1007/s10163-020-01058-7.
Goel, G., and A. S. Kalamdhad. 2017. “An investigation on use of paper mill sludge in brick manufacturing.” Constr. Build. Mater. 148 (Sep): 334–343. https://doi.org/10.1016/j.conbuildmat.2017.05.087.
Hariharan, S., and G. Jebaraj. 2012. “Manufacture of bricks with partial replacement of clay with waste glass powder ashes.” Int. J. Res. Comput. Appl. Robotics 6 (2): 1–24.
Hegazy, B. E., H. A. Fouad, and A. M. Hassanain. 2012. “Incorporation of water sludge, silica fume, and rice husk ash in brick making.” Adv. Environ. Res. 1 (1): 83–96. https://doi.org/10.12989/aer.2012.1.1.083.
Herek, L. C. S., C. E. Hori, M. H. M. Reis, N. D. Mora, C. R. G. Tavares, and R. Bergamasco. 2012. “Characterization of ceramic bricks incorporated with textile laundry sludge.” Ceram. Int. 38 (2): 951–959. https://doi.org/10.1016/j.ceramint.2011.08.015.
Janbuala, S., M. Eambua, A. Satayavibul, and W. Nethan. 2018. “Effect of bagasse and bagasse ash levels on properties of pottery products.” Heliyon 4 (9): e00814. https://doi.org/10.1016/j.heliyon.2018.e00814.
Kazmi, S. M. S., S. Abbas, M. J. Munir, and A. Khitab. 2016a. “Exploratory study on the effect of waste rice husk and sugarcane bagasse ashes in burnt clay bricks.” J. Build. Eng. 7 (Sep): 372–378. https://doi.org/10.1016/j.jobe.2016.08.001.
Kazmi, S. M. S., S. Abbas, M. L. Nehdi, M. A. Saleem, and M. J. Munir. 2017a. “Feasibility of using waste glass sludge in the production of ecofriendly clay bricks.” J. Mater. Civ. Eng. 29 (8): 04017056. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001928.
Kazmi, S. M. S., S. Abbas, M. A. Saleem, M. J. Munir, and A. Khitab. 2016b. “Manufacturing of sustainable clay bricks: Utilization of waste sugarcane bagasse and rice husk ashes.” Constr. Build. Mater. 120 (Sep): 29–41. https://doi.org/10.1016/j.conbuildmat.2016.05.084.
Kazmi, S. M. S., M. J. Munir, I. Patnaikuni, Y. Wu, and U. Fawad. 2017b. “Thermal performance enhancement of eco-friendly bricks incorporating agro-wastes.” Energy Build. 158 (Jan): 1117–1129. https://doi.org/10.1016/j.enbuild.2017.10.056.
Kazmi, S. M. S., M. J. Munir, Y. Wu, A. Hanif, and I. Patnaikuni. 2018. “Thermal performance evaluation of eco-friendly bricks incorporating waste glass sludge.” J. Cleaner Prod. 172 (Jan): 1867–1880. https://doi.org/10.1016/j.jclepro.2017.11.255.
Kizinievič, O., V. Kizinievič, I. Pundiene, and D. Molotokas. 2018. “Eco-friendly fired clay brick manufactured with agricultural solid waste.” Arch. Civ. Mech. Eng. 18 (4): 1156–1165. https://doi.org/10.1016/j.acme.2018.03.003.
Kornilov, A. V. 2005. “Reasons for the different effects of calcareous clays on strength properties of ceramics.” Glass Ceram. 62 (11–12): 391–393. https://doi.org/10.1007/s10717-006-0017-9.
Lin, K. L. 2007a. “The effect of heating temperature of thin film transistor-liquid crystal display (TFT-LCD) optical waste glass as a partial substitute partial for clay in eco-brick.” J. Cleaner Prod. 15 (18): 1755–1759. https://doi.org/10.1016/j.jclepro.2006.04.002.
Lin, K. L. 2007b. “Use of thin film transistor liquid crystal display (TFT-LCD) waste glass in the production of ceramic tiles.” J. Hazard. Mater. 148 (1–2): 91–97. https://doi.org/10.1016/j.jhazmat.2007.02.004.
Lin, K. L., L. S. Huang, J. L. Shie, C. J. Cheng, C. H. Lee, and T. C. Chang. 2013. “Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks.” Environ. Technol. 34 (1): 15–24. https://doi.org/10.1080/09593330.2012.679693.
Lingling, X., G. Wei, W. Tao, and Y. Nanru. 2005. “Study on fired bricks with replacing clay by fly ash in high volume ratio.” Constr. Build. Mater. 19 (3): 243–247. https://doi.org/10.1016/j.conbuildmat.2004.05.017.
Long, L., and H. Ye. 2015. “Effects of thermophysical properties of wall materials on energy performance in an active building.” Energy Procedia 75 (Aug): 1850–1855. https://doi.org/10.1016/j.egypro.2015.07.161.
Long, L., and H. Ye. 2016. “The roles of thermal insulation and heat storage in the energy performance of the wall materials: A simulation study.” Sci. Rep. 6 (1): 24181. https://doi.org/10.1038/srep24181.
Loryuenyong, V., T. Panyachai, K. Kaewsimork, and C. Siritai. 2009. “Effects of recycled glass substitution on the physical and mechanical properties of clay bricks.” Waste Manage. 29 (10): 2717–2721. https://doi.org/10.1016/j.wasman.2009.05.015.
Mao, L., Y. Wu, W. Zhang, L. Hu, and Q. Huang. 2019b. “Effects of electroplating sludge introduction on the morphology, mineral phase and porosity evolution of fired clay.” Constr. Build. Mater. 211 (Jun): 130–138. https://doi.org/10.1016/j.conbuildmat.2019.03.251.
Mao, L., Y. Wu, W. Zhang, and Q. Huang. 2019a. “The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing.” J. Environ. Manage. 231 (Feb): 780–787. https://doi.org/10.1016/j.jenvman.2018.10.120.
Marvila, M. T., A. R. G. Azevedo, D. Cecchin, J. M. Costa, G. C. Xavier, and D. F. Carmo. 2020. “Durability of coating mortars containing açai fibers.” Case Study Constr. Mater. 13 (Dec): e.00406. https://doi.org/10.1016/j.cscm.2020.e0406.
Maschio, S., E. Furlani, G. Tonello, N. Faraone, E. Aneggi, D. Minichelli, L. Fedrizzi, A. Bachiorrini, and S. Bruckner. 2009. “Fast firing of tiles containing paper mill sludge, glass cullet and clay.” Waste Manage. 29 (11): 2880–2885. https://doi.org/10.1016/j.wasman.2009.06.016.
Matteucci, F., M. Dondi, and G. Guarini. 2002. “Effect of soda-lime glass on sintering and technological properties of porcelain stoneware tiles.” Ceram. Int. 28 (8): 873–880. https://doi.org/10.1016/S0272-8842(02)00067-6.
Mobili, A., C. Giosuè, and F. Tittarelli. 2018. “Valorization of GRP dust waste in fired clay bricks.” Adv. Civ. Eng. 2018 (Jan): 1–9. https://doi.org/10.1155/2018/5256741.
Mozo, W., M. Cortés, and E. Vera. 2019. “Investigation on fired clay bricks by replacing clay with recycled glass and sludge ash.” J. Phys. Conf. Series 1386 (1): 012026. https://doi.org/10.1088/1742-6596/1386/1/012026.
Munir, M. J., S. Abbas, M. L. Nehdi, S. M. S. Kazmi, and A. Khitab. 2018. “Development of eco-friendly fired clay bricks incorporating recycled marble powder.” J. Mater. Civ. Eng. 30 (5): 04018069. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002259.
Muñoz V. P., O. Morales, M. P., Letelier, and G. Mendívil. 2016. “Fired clay bricks made by adding wastes: Assessment of the impact on physical, mechanical and thermal properties.” Constr. Build. Mater. 125 (2): 241–252. https://doi.org/10.1016/j.conbuildmat.2016.08.024.
Muñoz Velasco, P., M. P. Morales Ortíz, M. A. MendívilGiró, and L. Muñoz Velasco. 2014. “Fired clay bricks manufactured by adding wastes as sustainable construction material—A review.” Constr. Build. Mater. 63 (Jul): 97–107. https://doi.org/10.1016/j.conbuildmat.2014.03.045.
Ottosen, L. M., I. M. G. Bertelsen, P. E. Jensen, and G. M. Kirkelund. 2020. “Sewage sludge ash as resource for phosphorous and material for clay brick manufacturing.” Constr. Build. Mater. 249 (Jul): 118684. https://doi.org/10.1016/j.conbuildmat.2020.118684.
Pérez-Villarejo, L., S. Martínez-Martínez, B. Carrasco-Hurtado, D. Eliche-Quesada, C. Ureña-Nieto, and P. J. Sánchez-Soto. 2015. “Valorization and inertization of galvanic sludge waste in clay bricks.” Appl. Clay Sci. 105 (Mar): 89–99. https://doi.org/10.1016/j.clay.2014.12.022.
Phonphuak, N. 2017. “Application of dry grass for clay brick manufacturing.” Key Eng. Mater. 757 (8): 35–39. https://doi.org/10.4028/www.scientific.net/KEM.757.35.
Phonphuak, N., and P. Chindaprasirt. 2015. “Types of waste, properties, and durability of pore-forming waste-based fired masonry bricks.” In Eco-efficient masonry bricks and blocks, 103–127. Cambridge, UK: Woodhead Publishing.
Phonphuak, N., S. Kanyakam, and P. Chindaprasirt. 2016. “Utilization of waste glass to enhance physical–mechanical properties of fired clay brick.” J. Cleaner Prod. 112 (Jan): 3057–3062. https://doi.org/10.1016/j.jclepro.2015.10.084.
Phonphuak, N., C. Saengthong, and A. Srisuwan. 2019. “Physical and mechanical properties of fired clay bricks with rice husk waste addition as construction materials.” Mater. Today Proc. 17 (Jan): 1668–1674. https://doi.org/10.1016/j.matpr.2019.06.197.
Ponce Peña, P., M. A. González Lozano, A. Rodríguez Pulido, R. H. Lara Castro, Z. V. Quiñones Jurado, J. C. Pérez Medina, M. E. Poisot Vázquez, and A. Villavicencio Torres. 2016. “Effect of crushed glass cullet sizes on physical and mechanical properties of red clay bricks.” Adv. Mater. Sci. Eng. 2016 (Nov): 1–5. https://doi.org/10.1155/2016/2842969.
Rafukka, I. A., B. Onyekpe, and Y. Tijjani. 2013a. “Effect of Gezawa clay on the properties of silica stone for refractory brick.” Appl. Mech. Mater. 315 (1): 11–14. https://doi.org/10.4028/www.scientific.net/AMM.315.11.
Rafukka, I. A., B. Onyekpe, and Y. Tijjani. 2013b. “Viability of some Kano-Nigerian clays for refractory applications.” Appl. Mech. Mater. 315 (1): 477–481. https://doi.org/10.4028/www.scientific.net/AMM.315.477.
Rahman, A., T. Urabe, N. Kishimoto, and S. Mizuhara. 2015. “Effects of waste glass additions on quality of textile sludge-based bricks.” Environ. Technol. 36 (19): 2443–2450. https://doi.org/10.1080/09593330.2015.1034188.
Raimondo, M., M. Dondi, D. Gardini, G. Guarini, and F. Mazzanti. 2009. “Predicting the initial rate of water absorption in clay bricks.” Constr. Build. Mater. 23 (7): 2623–2630. https://doi.org/10.1016/j.conbuildmat.2009.01.009.
Rodney Fernando, P. 2017. “Mechanical and physical properties of fired clay brick partial doped with coconut shell ash.” J. Energy Nat. Resour. 6 (5): 58. https://doi.org/10.11648/j.jenr.20170605.11.
Saboya, F., G. C. Xavier, and J. Alexandre. 2007. “The use of the powder marble by-product to enhance the properties of brick ceramic.” Constr. Build. Mater. 21 (10): 1950–1960. https://doi.org/10.1016/j.conbuildmat.2006.05.029.
Santos, C. P., H. A. Oliveira, R. P. M. B. Oliveira, and Z. Marcedo. 2016. “Characteristics of calcerous clay used in the production of ceramics tiles in Sergipe, Brazil.” Ceramica 62 (362): 147–156. https://doi.org/10.1590/0366-69132016623621983.
Sarai, N. B. A. 2015. “Improvement on mechanical properties sodium feldspar for porcelains tableware.” Master’s thesis, Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia.
Sarani, N. A., and A. Abdul Kadir. 2013. “Thermal conductivity of fired clay bricks incorporated with cigarette butts.” Adv. Mater. Res. 690 (1): 919–924. https://doi.org/10.4028/www.scientific.net/AMR.690-693.919.
Shahbandeh, M. 2020. “Global coconut production 2000–2017.” Accessed June 30, 2020. https://www.statista.com/statistics/577497/world-coconut-production/.
Silva, R. V., J. de Brito, C. Q. Lye, and R. K. Dhir. 2017. “The role of waste glass in the production of ceramic-based products and other applications: A review.” J. Cleaner Prod. 167 (Nov): 346–364. https://doi.org/10.1016/j.jclepro.2017.08.185.
Smith, A. S. 2004a. “Recycled glass as a brick fluxing agent.” In Proc., Int. Conf. of Sustainable Waste Management and Recycling: Waste Glass, 149–165. London: Thomas Telford Publishing.
Smith, A. S. 2004b. To demonstrate commercial viability of incorporating ground glass in bricks with reduced emissions and energy savings. Oxon, UK: Waste and Resources Action Programme.
Sousa, S. J. G., and J. N. F. Holanda. 2012. “Characterization of non-calcareous “thin” red clay from south-eastern Brazil: Applicability in wall tile manufacture.” Cerâmica 58 (345): 29–35. https://doi.org/10.1590/s0366-69132012000100006.
Stryszewska, T., P. Matysek, S. Kańka, and M. Witkowski. 2016. “The influence of water saturation on mechanical properties of ceramic bricks—Tests on 19th-century and contemporary bricks.” Materiales de Construcción 66 (323): e095. https://doi.org/10.3989/mc.2016.07315.
Sutcu, M., and S. Akkurt. 2009. “The use of recycled paper processing residues in making porous brick with reduced thermal conductivity.” Ceram. Int. 35 (7): 2625–2631. https://doi.org/10.1016/j.ceramint.2009.02.027.
Sutcu, M., H. Alptekin, E. Erdogmus, Y. Er, and O. Gencel. 2015. “Characteristics of fired clay bricks with waste marble powder addition as building materials.” Constr. Build. Mater. 82 (May): 1–8. https://doi.org/10.1016/j.conbuildmat.2015.02.055.
Sutcu, M., J. J. del Coz Díaz, F. P. ÁlvarezRabanal, O. Gencel, and S. Akkurt. 2014. “Thermal performance optimization of hollow clay bricks made up of paper waste.” Energy Build. 75 (Jun): 96–108. https://doi.org/10.1016/j.enbuild.2014.02.006.
Taurino, R., D. Ferretti, L. Cattani, F. Bozzoli, and F. Bondioli. 2019. “Lightweight clay bricks manufactured by using locally available wine industry waste.” J. Build. Eng. 26 (Nov): 100892. https://doi.org/10.1016/j.jobe.2019.100892.
Thalmaier, G., N. Cobîrzan, A. A. Balog, H. Constantinescu, M. Streza, M. Nasui, and B. V. Neamtu. 2020. “Influence of sawdust particle size on fired clay brick properties.” Materiales de Construcción 70 (338): 215. https://doi.org/10.3989/mc.2020.04219.
Tintu, K. T. 2019. “Development of sustainable masonry bricks.” Master’s thesis, Dept. of Civil Engineering, York Univ.
Ukwatta, A., A. Mohajerani, N. Eshtiaghi, and S. Setunge. 2016. “Variation in physical and mechanical properties of fired-clay bricks incorporating ETP biosolids.” J. Cleaner Prod. 119 (Aug): 76–85. https://doi.org/10.1016/j.jclepro.2016.01.094.
Weng, C.-H., D.-F. Lin, and P.-C. Chiang. 2003. “Utilization of sludge as brick materials.” Adv. Environ. Res. 7 (3): 679–685. https://doi.org/10.1016/S1093-0191(02)00037-0.
Yaras, A. 2020. “Combined effects of paper mill sludge and carbonation sludge on characteristics of fired clay bricks.” Constr. Build. Mater. 249 (Jul): 118722. https://doi.org/10.1016/j.conbuildmat.2020.118722.
Yürüyen, S., and H. Ö. Toplan. 2009. “The sintering kinetics of porcelain bodies made from waste glass and fly ash.” Ceram. Int. 35 (6): 2427–2433. https://doi.org/10.1016/j.ceramint.2009.02.005.
Zhang, L. 2013. “Production of bricks from waste materials—A review.” Constr. Build. Mater. 47 (Oct): 643–655. https://doi.org/10.1016/j.conbuildmat.2013.05.043.
Zhang, M., C. Chen, L. Mao, and Q. Wu. 2018. “Use of electroplating sludge in production of fired clay bricks: Characterization and environmental risk evaluation.” Constr. Build. Mater. 159 (Jan): 27–36. https://doi.org/10.1016/j.conbuildmat.2017.10.130.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 10October 2021

History

Received: Nov 12, 2020
Accepted: Feb 23, 2021
Published online: Jul 26, 2021
Published in print: Oct 1, 2021
Discussion open until: Dec 26, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Coordinator, Landmark International Office and Linkages, Landmark Univ., Omu-Aran, PMB 1001, Kwara State, Nigeria (corresponding author). ORCID: https://orcid.org/0000-0001-9457-1071. Email: [email protected]
Ph.D. Student, Dept. of Metallurgical and Materials Engineering, Federal Univ. of Technology, Akure, PMB 704, Ondo State, Nigeria. ORCID: https://orcid.org/0000-0002-2685-1837. Email: [email protected]
Abayomi Adewale Akinwande [email protected]
Ph.D. Student, Dept. of Metallurgical and Materials Engineering, Federal Univ. of Technology, Akure, PMB 704, Ondo State, Nigeria. Email: [email protected]
Olanrewaju Seun Adesina, Ph.D. [email protected]
Dept. of Mechanical Engineering, Landmark Univ., Omu-Aran, PMB 1001, Kwara State, Nigeria. Email: [email protected]
Oladele Samson Bello [email protected]
Ph.D. Student, Dept. of Metallurgical and Materials Engineering, Federal Univ. of Technology, Akure, PMB 704, Ondo State, Nigeria. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Physical and mechanical properties of fired industrial waste-clay bricks from clam shells and soda lime silica glass, Materials Today: Proceedings, 10.1016/j.matpr.2022.10.275, 75, (151-155), (2023).
  • Optimization of Bamboo Fiber–Reinforced Composite-Clay Bricks for Development of Low-Cost Farm Settlements toward Boosting Rural Agribusiness in Africa, Journal of Materials in Civil Engineering, 10.1061/(ASCE)MT.1943-5533.0004489, 34, 12, (2022).
  • Microstructure and particle size effects on selected mechanical properties of waste glass-reinforced aluminium matrix composites, Materials Today: Proceedings, 10.1016/j.matpr.2022.05.330, 62, (4589-4598), (2022).
  • Optimization of selected casting parameters on the mechanical behaviour of Al 6061/glass powder composites, Heliyon, 10.1016/j.heliyon.2022.e09350, 8, 5, (e09350), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share