Technical Papers
May 4, 2021

Multiphase Sphere Modeling of High-Volume Fly Ash Concrete: Freezing–Thawing Performance

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 7

Abstract

Replacing more than 50% of the cement in concrete with fly ash produces high-volume fly ash (HVFA) concrete, which likely reduces the life-cycle cost and environmental footprints of concrete. In cold climates, the susceptibility of HVFA concrete to freezing–thawing cycles is a durability concern if no appropriate measures are taken. This study modeled the degradation of dynamic modulus of elasticity of HVFA concrete during the freezing–thawing cycles. A four-phase sphere composite model considering the unhydrated fly ash particles in HVFA concrete is proposed to interpret the change in dynamic modulus of elasticity. The modeled values were in good agreement with the measured values; therefore, this model sheds new light on the deterioration of HVFA concrete caused by freeze/thaw damage cycles. Parameter analysis clarified the influence of the key factors in this model.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

S. Du and X. Shi acknowledge the funding support provided by the National Center for Transportation Infrastructure Durability & Life-Extension. S. Du also acknowledges the support by the John Faber Scholarship provided by the American Coal Ash Association Educational Foundation (ACAAEF), and the Richard Perteet Graduate Fellowship in Civil Engineering provided by Washington State University. The authors thank Dr. Scott Boroughs at the WSU Peter Hooper GeoAnalytical Lab for his assistance in the use of the microprobe. The authors also thank Dr. Ladean McKittrick at the Subzero Research Laboratory at Montana State University for his assistance in conducting the micro-CT scanning.

References

Adamu, M., B. S. Mohammed, and M. Shahir Liew. 2018. “Mechanical properties and performance of high volume fly ash roller compacted concrete containing crumb rubber and nano silica.” Constr. Build. Mater. 171 (May): 521–538. https://doi.org/10.1016/j.conbuildmat.2018.03.138.
ASTM. 2015. Standard test method for resistance of concrete to rapid freezing and thawing. ASTM C666/C666M-15. West Conshohocken, PA: ASTM.
ASTM. 2019a. Standard practice for making and curing concrete test specimens in the laboratory. ASTM C192/C192M-19. West Conshohocken, PA: ASTM.
ASTM. 2019b. Standard test method for fundamental transverse, longitudinal, and torsional resonant frequencies of concrete specimens. ASTM C215-19. West Conshohocken, PA: ASTM.
ASTM. 2020a. Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39/C39M-20. West Conshohocken, PA: ASTM.
ASTM. 2020b. Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes. ASTM C1585-20. West Conshohocken, PA: ASTM.
Atiş, C. D. 2003. “High-volume fly ash concrete with high strength and low drying shrinkage.” J. Mater. Civ. Eng. 15 (2): 153–156. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(153).
Babu, K. G., and G. S. N. Rao. 1996. “Efficiency of fly ash in concrete with age.” Cem. Concr. Res. 26 (3): 465–474. https://doi.org/10.1016/S0008-8846(96)85034-4.
Bentz, D. P. 2009. “Influence of internal curing using lightweight aggregates on interfacial transition zone percolation and chloride ingress in mortars.” Cem. Concr. Compos. 31 (5): 285–289. https://doi.org/10.1016/j.cemconcomp.2009.03.001.
Berto, L., A. Saetta, and D. Talledo. 2015. “Constitutive model of concrete damaged by freeze–thaw action for evaluation of structural performance of RC elements.” Constr. Build. Mater. 98 (Nov): 559–569. https://doi.org/10.1016/j.conbuildmat.2015.08.035.
Björnström, J., A. Martinelli, A. Matic, L. Börjesson, and I. Panas. 2004. “Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement.” Chem. Phys. Lett. 392 (1–3): 242–248. https://doi.org/10.1016/j.cplett.2004.05.071.
Bodor, M., R. M. Santos, G. Cristea, M. Salman, Ö. Cizer, R. I. Iacobescu, Y. W. Chiang, K. van Balen, M. Vlad, and T. van Gerven. 2016. “Laboratory investigation of carbonated BOF slag used as partial replacement of natural aggregate in cement mortars.” Cem. Concr. Compos. 65 (Jan): 55–66. https://doi.org/10.1016/j.cemconcomp.2015.10.002.
Chen, F., and P. Qiao. 2015. “Probabilistic damage modeling and service-life prediction of concrete under freeze–thaw action.” Mater. Struct. 48 (8): 2697–2711. https://doi.org/10.1617/s11527-014-0347-y.
Chen, J., X. Deng, Y. Luo, L. He, Q. Liu, and X. Qiao. 2015. “Investigation of microstructural damage in shotcrete under a freeze–thaw environment.” Constr. Build. Mater. 83 (May): 275–282. https://doi.org/10.1016/j.conbuildmat.2015.02.042.
De la Varga, I., J. Castro, D. P. Bentz, F. Zunino, and J. Weiss. 2018. “Evaluating the hydration of high volume fly ash mixtures using chemically inert fillers.” Constr. Build. Mater. 161 (Feb): 221–228. https://doi.org/10.1016/j.conbuildmat.2017.11.132.
Deschner, F., B. Münch, F. Winnefeld, and B. Lothenbach. 2013. “Quantification of fly ash in hydrated, blended Portland cement pastes by backscattered electron imaging.” J. Microsci. 251 (2): 188–204. https://doi.org/10.1111/jmi.12061.
Dong, Y., C. Su, P. Qiao, and L. Z. Sun. 2018. “Microstructural damage evolution and its effect on fracture behavior of concrete subjected to freeze-thaw cycles.” Int. J. Damage Mech. 27 (8): 1272–1288. https://doi.org/10.1177/1056789518787025.
Du, S., Y. Ge, and X. Shi. 2019. “A targeted approach of employing nano-materials in high-volume fly ash concrete.” Cem. Concr. Compos. 104 (Nov): 103390. https://doi.org/10.1016/j.cemconcomp.2019.103390.
Du, S., Y. Jiang, J. Zhong, Y. Ge, and X. Shi. 2020. “Surface abrasion resistance of high-volume fly ash concrete modified by graphene oxide: Macro- and micro-perspectives.” Constr. Build. Mater. 237 (Mar): 117686. https://doi.org/10.1016/j.conbuildmat.2019.117686.
Du, S., X. Shi, and Y. Ge. 2017a. “Electron probe microanalysis investigation into high-volume fly ash mortars.” J. Mater. Civ. Eng. 29 (7): 04017043. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001854.
Du, S., H. Zhao, Y. Ge, Z. Yang, and X. Shi. 2017b. “Laboratory investigation into the modification of transport properties of high-volume fly ash mortar by chemical admixtures.” J. Mater. Civ. Eng. 29 (10): 04017184. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002025.
Elchalakani, M., H. Basarir, and A. Karrech. 2017. “Green concrete with high-volume fly ash and slag with recycled aggregate and recycled water to build future sustainable cities.” J. Mater. Civ. Eng. 29 (2): 04016219. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001748.
Filho, J. H., M. H. F. Medeiros, E. Pereira, P. Helene, and G. C. Isaia. 2013. “High-volume fly ash concrete with and without hydrated lime: Chloride diffusion coefficient from accelerated test.” J. Mater. Civ. Eng. 25 (3): 411–418. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000596.
Gesoğlu, M., E. Güneyisi, and E. Özbay. 2009. “Properties of self-compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume.” Constr. Build. Mater. 23 (5): 1847–1854. https://doi.org/10.1016/j.conbuildmat.2008.09.015.
Haha, M. B., K. De Weerdt, and B. Lothenbach. 2010. “Quantification of the degree of reaction of fly ash.” Cem. Concr. Res. 40 (11): 1620–1629. https://doi.org/10.1016/j.cemconres.2010.07.004.
Haley, J. S. 2011. Climatology of freeze-thaw days in the conterminous United States: 1982-2009. Kent, OH: Kent State Univ.
Han, J., K. Wang, J. Shi, and Y. Wang. 2015. “Mechanism of triethanolamine on Portland cement hydration process and microstructure characteristics.” Constr. Build. Mater. 93 (Sep): 457–462. https://doi.org/10.1016/j.conbuildmat.2015.06.018.
Han, S.-H., and J.-K. Kim. 2004. “Effect of temperature and age on the relationship between dynamic and static elastic modulus of concrete.” Cem. Concr. Res. 34 (7): 1219–1227. https://doi.org/10.1016/j.cemconres.2003.12.011.
Huang, C.-H., S.-K. Lin, C.-S. Chang, and H.-J. Chen. 2013. “Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash.” Constr. Build. Mater. 46 (Sep): 71–78. https://doi.org/10.1016/j.conbuildmat.2013.04.016.
Jin, S., G. Zheng, and J. Yu. 2020. “A micro freeze-thaw damage model of concrete with fractal dimension.” Constr. Build. Mater. 257 (Oct): 119434. https://doi.org/10.1016/j.conbuildmat.2020.119434.
Jo, B.-W., C.-H. Kim, G. Tae, and J.-B. Park. 2007. “Characteristics of cement mortar with nano-SiO2 particles.” Constr. Build. Mater. 21 (6): 1351–1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020.
Kim, Y.-Y., K.-M. Lee, J.-W. Bang, and S.-J. Kwon. 2014. “Effect of W/C ratio on durability and porosity in cement mortar with constant cement amount.” Adv. Mater. Sci. Eng. 2014 (Apr): 1–11. https://doi.org/10.1155/2014/273460.
Kumar, B., G. K. Tike, and P. K. Nanda. 2007. “Evaluation of properties of high-volume fly-ash concrete for pavements.” J. Mater. Civ. Eng. 19 (10): 906–911. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(906).
Lee, B. J., S.-H. Kee, T. Oh, and Y.-Y. Kim. 2017. “Evaluating the dynamic elastic modulus of concrete using shear-wave velocity measurements.” Adv. Mater. Sci. Eng. 2017 (Jul): 1–13. https://doi.org/10.1155/2017/1651753.
Li, B., J. Mao, T. Nawa, and T. Han. 2017. “Mesoscopic damage model of concrete subjected to freeze-thaw cycles using mercury intrusion porosimetry and differential scanning calorimetry (MIP-DSC).” Constr. Build. Mater. 147 (Aug): 79–90. https://doi.org/10.1016/j.conbuildmat.2017.04.136.
Li, G., Y. Zhao, and S.-S. Pang. 1999. “Four-phase sphere modeling of effective bulk modulus of concrete.” Cem. Concr. Res. 29 (6): 839–845. https://doi.org/10.1016/S0008-8846(99)00040-X.
Li, Y., R. Wang, S. Li, Y. Zhao, and Y. Qin. 2018. “Resistance of recycled aggregate concrete containing low- and high-volume fly ash against the combined action of freeze–thaw cycles and sulfate attack.” Constr. Build. Mater. 166 (Mar): 23–34. https://doi.org/10.1016/j.conbuildmat.2018.01.084.
Lin, C., W. Wei, and Y. H. Hu. 2016. “Catalytic behavior of graphene oxide for cement hydration process.” J. Phys. Chem. Solids 89 (Feb): 128–133. https://doi.org/10.1016/j.jpcs.2015.11.002.
Liu, L., G. Ye, E. Schlangen, H. Chen, Z. Qian, W. Sun, and K. van Breugel. 2011. “Modeling of the internal damage of saturated cement paste due to ice crystallization pressure during freezing.” Cem. Concr. Compos. 33 (5): 562–571. https://doi.org/10.1016/j.cemconcomp.2011.03.001.
Liu, Z., and W. Hansen. 2015. “Freezing characteristics of air-entrained concrete in the presence of deicing salt.” Cem. Concr. Res. 74 (Aug): 10–18. https://doi.org/10.1016/j.cemconres.2015.03.015.
Lu, B., and S. Torquato. 1992. “Nearest-surface distribution functions for polydispersed particle systems.” Phys. Rev. A 45 (8): 5530–5544. https://doi.org/10.1103/PhysRevA.45.5530.
Lu, Z., D. Hou, H. Ma, T. Fan, and Z. Li. 2016. “Effects of graphene oxide on the properties and microstructures of the magnesium potassium phosphate cement paste.” Constr. Build. Mater. 119 (Aug): 107–112. https://doi.org/10.1016/j.conbuildmat.2016.05.060.
Malhotra, V. M. 2002. “High-performance high-volume fly ash concrete.” Concr. Int. 24 (7): 30–34.
Mardani-Aghabaglou, A., Ö. Andiç-Çakir, and K. Ramyar. 2013. “Freeze–thaw resistance and transport properties of high-volume fly ash roller compacted concrete designed by maximum density method.” Cem. Concr. Compos. 37 (Mar): 259–266. https://doi.org/10.1016/j.cemconcomp.2013.01.009.
Mardani-Aghabaglou, A., and K. Ramyar. 2013. “Mechanical properties of high-volume fly ash roller compacted concrete designed by maximum density method.” Constr. Build. Mater. 38 (Jan): 356–364. https://doi.org/10.1016/j.conbuildmat.2012.07.109.
Matsunaga, T., J. K. Kim, S. Hardcastle, and P. K. Rohatgi. 2002. “Crystallinity and selected properties of fly ash particles.” Mater. Sci. Eng. A 325 (1–2): 333–343. https://doi.org/10.1016/S0921-5093(01)01466-6.
Moffatt, E. G., M. D. A. Thomas, and A. Fahim. 2017. “Performance of high-volume fly ash concrete in marine environment.” Cem. Concr. Res. 102 (Dec): 127–135. https://doi.org/10.1016/j.cemconres.2017.09.008.
Mohammed, A., J. G. Sanjayan, W. H. Duan, and A. Nazari. 2015. “Incorporating graphene oxide in cement composites: A study of transport properties.” Constr. Build. Mater. 84 (Jun): 341–347. https://doi.org/10.1016/j.conbuildmat.2015.01.083.
Mohammed, A., J. G. Sanjayan, W. H. Duan, and A. Nazari. 2016. “Graphene oxide impact on hardened cement expressed in enhanced freeze–thaw resistance.” J. Mater. Civ. Eng. 28 (9): 04016072. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001586.
Mora, E., G. González, P. Romero, and E. Castellón. 2019. “Control of water absorption in concrete materials by modification with hybrid hydrophobic silica particles.” Constr. Build. Mater. 221 (Nov): 210–218. https://doi.org/10.1016/j.conbuildmat.2019.06.086.
Müllauer, W., R. E. Beddoe, and D. Heinz. 2015. “Leaching behavior of major and trace elements from concrete: Effect of fly ash and GGBS.” Cem. Concr. Compos. 58 (Apr): 129–139. https://doi.org/10.1016/j.cemconcomp.2015.02.002.
Neubauer, C. M., H. M. Jennings, and E. J. Garboczi. 1996. “A three-phase model of the elastic and shrinkage properties of mortar.” Adv. Cem. Based Mater. 4 (1): 6–20. https://doi.org/10.1016/S1065-7355(96)90058-9.
Oner, A., S. Akyuz, and R. Yildiz. 2005. “An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete.” Cem. Concr. Res. 35 (6): 1165–1171. https://doi.org/10.1016/j.cemconres.2004.09.031.
Pan, Z., L. He, L. Qiu, A. H. Korayem, G. Li, J. W. Zhu, F. Collins, D. Li, W. H. Duan, and M. C. Wang. 2015. “Mechanical properties and microstructure of a graphene oxide–cement composite.” Cem. Concr. Compos. 58 (Apr): 140–147. https://doi.org/10.1016/j.cemconcomp.2015.02.001.
Papadakis, V. G., S. Antiohos, and S. Tsimas. 2002. “Supplementary cementing materials in concrete: Part II: A fundamental estimation of the efficiency factor.” Cem. Concr. Res. 32 (10): 1533–1538. https://doi.org/10.1016/S0008-8846(02)00829-3.
Papadakis, V. G., and S. Tsimas. 2002. “Supplementary cementing materials in concrete: Part I: Efficiency and design.” Cem. Concr. Res. 32 (10): 1525–1532. https://doi.org/10.1016/S0008-8846(02)00827-X.
Poon, C. S., L. Lam, and Y. L. Wong. 2000. “A study on high strength concrete prepared with large volumes of low calcium fly ash.” Cem. Concr. Res. 30 (3): 447–455. https://doi.org/10.1016/S0008-8846(99)00271-9.
Puthipad, N., M. Ouchi, S. Rath, and A. Attachaiyawuth. 2016. “Enhancement in self-compactability and stability in volume of entrained air in self-compacting concrete with high volume fly ash.” Constr. Build. Mater. 128 (Dec): 349–360. https://doi.org/10.1016/j.conbuildmat.2016.10.087.
Ramesh, G., E. D. Sotelino, and W. F. Chen. 1996. “Effect of transition zone on elasi’ic moduli of concrete materials.” Cem. Concr. Res. 26 (4): 611–622. https://doi.org/10.1016/0008-8846(96)00016-6.
Ranz, J., S. Aparicio, H. Romero, M. J. Casati, M. Molero, and M. González. 2014. “Monitoring of freeze-thaw cycles in concrete using embedded sensors and ultrasonic imaging.” Sensors 14 (2): 2280–2304. https://doi.org/10.3390/s140202280.
Şahmaran, M., S. B. Keskin, G. Ozerkan, and I. O. Yaman. 2008. “Self-healing of mechanically-loaded self consolidating concretes with high volumes of fly ash.” Cem. Concr. Compos. 30 (10): 872–879. https://doi.org/10.1016/j.cemconcomp.2008.07.001.
Şahmaran, M., İ. Ö. Yaman, and M. Tokyay. 2009. “Transport and mechanical properties of self consolidating concrete with high volume fly ash.” Cem. Concr. Compos. 31 (2): 99–106. https://doi.org/10.1016/j.cemconcomp.2008.12.003.
Şahmaran, M., Ö. Yaman, and M. Tokyay. 2015. “Development of high-volume low-lime and high-lime fly-ash-incorporated self-consolidating concrete.” Mag. Concr. Res. 59 (2): 97–106. https://doi.org/10.1680/macr.2007.59.2.97.
Sikora, P., M. Abd Elrahman, S. Y. Chung, K. Cendrowski, E. Mijowska, and D. Stephan. 2019. “Mechanical and microstructural properties of cement pastes containing carbon nanotubes and carbon nanotube-silica core-shell structures, exposed to elevated temperature.” Cem. Concr. Compos. 95 (Jan): 193–204. https://doi.org/10.1016/j.cemconcomp.2018.11.006.
Silva, P., and J. de Brito. 2013. “Electrical resistivity and capillarity of self-compacting concrete with incorporation of fly ash and limestone filler.” Adv. Concr. Constr. 1 (1): 65–84. https://doi.org/10.12989/acc.2013.1.1.065.
Simeonov, P., and S. Ahmad. 1995. “Effect of transition zone on the elastic behavior of cement-based composites.” Cem. Concr. Res. 25 (1): 165–176. https://doi.org/10.1016/0008-8846(94)00124-H.
Sujjavanich, S., V. Sida, and P. Suwanvitaya. 2005. “Chloride permeability and corrosion risk of high-volume fly ash concrete with mid-range water reducer.” ACI Mater. J. 102 (3): 177–182.
Supit, S. W. M., and F. Makalew. 2020. “Effects of micro- and ultrafine metakaolin on compressive strength and water sorptivity of high volume fly ash concrete.” In Proc., AICCE’19, Lecture Notes in Civil Engineering, 415–427. Berlin: Springer.
Van den Heede, P., J. Furniere, and N. De Belie. 2013. “Influence of air entraining agents on deicing salt scaling resistance and transport properties of high-volume fly ash concrete.” Cem. Concr. Compos. 37 (Mar): 293–303. https://doi.org/10.1016/j.cemconcomp.2013.01.005.
Van den Heede, P., E. Gruyaert, and N. De Belie. 2010. “Transport properties of high-volume fly ash concrete: Capillary water sorption, water sorption under vacuum and gas permeability.” Cem. Concr. Compos. 32 (10): 749–756. https://doi.org/10.1016/j.cemconcomp.2010.08.006.
Velandia, D. F., C. J. Lynsdale, J. L. Provis, and F. Ramirez. 2018. “Effect of mix design inputs, curing and compressive strength on the durability of Na2SO4-activated high volume fly ash concretes.” Cem. Concr. Compos. 91 (Aug): 11–20. https://doi.org/10.1016/j.cemconcomp.2018.03.028.
Wang, B., F. Wang, and Q. Wang. 2018. “Damage constitutive models of concrete under the coupling action of freeze–thaw cycles and load based on Lemaitre assumption.” Constr. Build. Mater. 173 (Jun): 332–341. https://doi.org/10.1016/j.conbuildmat.2018.04.054.
Wang, X.-Y. 2019. “Simulation for optimal mixture design of low-CO2 high-volume fly ash concrete considering climate change and CO2 uptake.” Cem. Concr. Compos. 104 (Nov): 103408. https://doi.org/10.1016/j.cemconcomp.2019.103408.
Wang, Y., Y. Cao, P. Zhang, Y. Ma, T. Zhao, H. Wang, and Z. Zhang. 2019. “Water absorption and chloride diffusivity of concrete under the coupling effect of uniaxial compressive load and freeze–thaw cycles.” Constr. Build. Mater. 209 (Jun): 566–576. https://doi.org/10.1016/j.conbuildmat.2019.03.091.
Wong, H. S., M. K. Head, and N. R. Buenfeld. 2006. “Pore segmentation of cement-based materials from backscattered electron images.” Cem. Concr. Res. 36 (6): 1083–1090. https://doi.org/10.1016/j.cemconres.2005.10.006.
Wu, J. H., X. C. Pu, F. Liu, and C. Wang. 2006. “High performance concrete with high volume fly ash.” Key Eng. Mater. 302–303 (Jan): 470–478. https://doi.org/10.4028/www.scientific.net/KEM.302-303.470.
Xu, G., S. Du, J. He, and X. Shi. 2019. “The role of admixed graphene oxide in a cement hydration system.” Carbon 148 (Jul): 141–150. https://doi.org/10.1016/j.carbon.2019.03.072.
Xu, G., J. Zhong, and X. Shi. 2018. “Influence of graphene oxide in a chemically activated fly ash.” Fuel 226 (Aug): 644–657. https://doi.org/10.1016/j.fuel.2018.04.033.
Xu, Y., and Y. Fan. 2018. “Effect of on graphene oxide the concrete resistance to chloride ion permeability.” Mater. Sci. Eng. 394 (3): 032020. https://doi.org/10.1088/1757-899X/394/3/032020.
Yang, C. C. 1998. “Effect of the transition zone on the elastic moduli of mortar.” Cem. Concr. Res. 28 (5): 727–736. https://doi.org/10.1016/S0008-8846(98)00035-0.
Yang, C. C., and R. Huang. 1996. “Double inclusion model for approximate elastic moduli of concrete material.” Cem. Concr. Res. 26 (1): 83–91. https://doi.org/10.1016/0008-8846(95)00196-4.
Yang, H., Y. Che, and F. Leng. 2018. “High volume fly ash mortar containing nano-calcium carbonate as a sustainable cementitious material: microstructure and strength development.” Sci. Rep. 8 (1): 1–11. https://doi.org/10.1038/s41598-018-34851-4.
Yang, Z. 2004. Assessing cumulative damage in concrete and quantifying its influence on life cycle performance modeling. West Lafayette, IN: Purdue Univ.
Ye, H., and Z. Chen. 2019. “Mechanisms of alkali-silica reaction in alkali-activated high-volume fly ash mortars.” J. Adv. Concr. Technol. 17 (6): 269–281. https://doi.org/10.3151/jact.17.269.
Yerramala, A., and K. Ganesh Babu. 2011. “Transport properties of high volume fly ash roller compacted concrete.” Cem. Concr. Compos. 33 (10): 1057–1062. https://doi.org/10.1016/j.cemconcomp.2011.07.010.
Ying, J., J. Xiao, L. Shen, and M. A. Bradford. 2013. “Five-phase composite sphere model for chloride diffusivity prediction of recycled aggregate concrete.” Mag. Concr. Res. 65 (9): 573–588. https://doi.org/10.1680/macr.12.00180.
Zhang, Y. M., W. Sun, and H. D. Yan. 2000. “Hydration of high-volume fly ash cement pastes.” Cem. Concr. Compos. 22 (6): 445–452. https://doi.org/10.1016/S0958-9465(00)00044-5.
Zhang, Z., S. Qian, and H. Ma. 2014. “Investigating mechanical properties and self-healing behavior of micro-cracked ECC with different volume of fly ash.” Constr. Build. Mater. 52 (Feb): 17–23. https://doi.org/10.1016/j.conbuildmat.2013.11.001.
Zhao, H., X. Qin, J. Liu, L. Zhou, Q. Tian, and P. Wang. 2018. “Pore structure characterization of early-age cement pastes blended with high-volume fly ash.” Constr. Build. Mater. 189 (Nov): 934–946. https://doi.org/10.1016/j.conbuildmat.2018.09.023.
Zheng, J., and X. Zhou. 2008. “Three-phase composite sphere model for the prediction of chloride diffusivity of concrete.” J. Mater. Civ. Eng. 20 (3): 205–211. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:3(205).
Zheng, J., X. Zhou, and L. Sun. 2016. “Analytical prediction of the Young’s modulus of concrete with spheroidal aggregates.” J. Mater. Civ. Eng. 28 (1): 04015080. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001344.
Zhou, G.-X., J. Zhong, H. Zhang, X. Hu, J. Wu, N. Koratkar, and X. Shi. 2017. “Influence of releasing graphene oxide into a clayey sand: physical and mechanical properties.” RSC Adv. 7 (29): 18060–18067. https://doi.org/10.1039/C7RA01539A.
Zimmerman, R. W., M. S. King, and P. J. M. Monteiro. 1986. “The elastic moduli of mortar as a porous-granular material.” Cem. Concr. Res. 16 (2): 239–245. https://doi.org/10.1016/0008-8846(86)90140-7.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 7July 2021

History

Received: Jun 3, 2020
Accepted: Dec 29, 2020
Published online: May 4, 2021
Published in print: Jul 1, 2021
Discussion open until: Oct 4, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate Research Assistant, School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China; Graduate Research Assistant, Dept. of Civil and Environmental Engineering, Washington State Univ., Pullman, WA 99164-2910. Email: [email protected]
Professor, School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China. Email: [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Washington State Univ., Pullman, WA 99164-2910 (corresponding author). ORCID: https://orcid.org/0000-0003-3576-8952. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Quantification of the reaction degree of fly ash in blended cement systems, Cement and Concrete Research, 10.1016/j.cemconres.2023.107121, 167, (107121), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share