Technical Papers
Mar 23, 2021

Fatigue Damage Self-Healing Analysis and the Occurrence of an Optimal Self-Healing Time in Asphalt Concrete

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 6

Abstract

Fatigue damage is one of the main distresses responsible for the deterioration of asphalt roads. Self-healing, occurring during rest periods, has been shown to increase the total number of loading cycles. The increase is assumed to depend on the time at which healing is induced and the healing duration. In the first damage stage, in which damage is caused by thixotropy, self-heating and permanent deformation, the recovery is equal to the reversible phenomena thixotropy and self-heating. In the second and third damage stages, the closure of cracks starts to dominantly contribute to the gain of additional loading cycles. The healable crack volume depends on the healing method and healing duration, and includes aspects of the crack type. If the healable volume is insufficient to completely close cracks, the healing efficiency decreases due to exponential crack growth. Other occurring phenomena related to the healing process, like thermal degradation, could lead to a further increase in loading cycles at the expense of other asphalt performance aspects. The heterogeneity of asphalt introduces uncertainty into measurements. Hence, the optimal healing time to induce healing for a maximum extension of loading cycles can be determined only in a range.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models or code were generated or used during the study.

Acknowledgments

The author thanks Alvaro Garcia at the University of Nottingham for support and discussion of the topic of self-healing in asphalt mixtures.

References

Adhikari, S., S. Shen, and Z. You. 2009. “Evaluation of fatigue models of hot-mix asphalt through laboratory testing.” Transp. Res. Rec. 2127 (1): 36–42. https://doi.org/10.3141/2127-05.
Ajam, H., P. Lastra-González, B. Gómez-Meijide, G. Airey, and A. Garcia. 2017. “Self-healing of dense asphalt concrete by two different approaches: Electromagnetic induction and infrared radiation.” J. Test. Eval. 45 (6): 1933–1940. https://doi.org/10.1520/JTE20160612.
Aliha, M. R. M., H. Fazaeli, S. Aghajani, and F. Moghadas Nejad. 2015. “Effect of temperature and air void on mixed mode fracture toughness of modified asphalt mixtures.” Constr. Build. Mater. 95 (Oct): 545–555. https://doi.org/10.1016/j.conbuildmat.2015.07.165.
Al-Mansoori, T., J. Norambuena-Contreras, R. Micaelo, and A. Garcia. 2018. “Self-healing of asphalt mastic by the action of polymeric capsules containing rejuvenators.” Constr. Build. Mater. 161 (Feb): 330–339. https://doi.org/10.1016/j.conbuildmat.2017.11.125.
Alvarez, A. E., L. V. Espinosa, S. Caro, E. J. Rueda, J. P. Aguiar, and L. G. Loria. 2018. “Differences in asphalt binder variability quantified through traditional and advanced laboratory testing.” Constr. Build. Mater. 176 (Jul): 500–508. https://doi.org/10.1016/j.conbuildmat.2018.05.046.
Arenas, H. L. 2009. Propuesta Técnica para Garantizar la Homogeneidad de los Asfaltos Producidos en las Refinerías Colombianas. Bogotá, Colombia: Cámara Colombiana de Infraestructura.
Bazin, P., and I. B. Saunier. 1967. “Deformability, fatigue and healing properties of asphalt mixes.” In Proc., 2nd Int. Conf. on the Structure Design of Asphalt Pavements, 553–568. Ann Arbor, MI: Univ. of Michigan.
Bazyleva, A. B., M. A. Hasan, M. Fulem, M. Becerra, and J. M. Shaw. 2009. “Bitumen and heavy oil rheological properties: Reconciliation with viscosity measurements.” J. Chem. Eng. Data 55 (3): 1389–1397. https://doi.org/10.1021/je900562u.
Bhasin, A., S. Palvadi, and D. Little. 2011. “Influence of aging and temperature on intrinsic healing of asphalt binders.” Transp. Res. Rec. 2207 (1): 70–78. https://doi.org/10.3141/2207-10.
Blaiszik, B. J., S. L. B. Kramer, S. C. Olugebefola, J. S. Moore, N. R. Sottos, and S. R. White. 2010. “Self-healing polymers and composites.” Annu. Rev. Mater. Res. 40 (1): 179–211. https://doi.org/10.1146/annurev-matsci-070909-104532.
Bodin, D., G. Pijaudier-Cabot, C. de La Roche, J.-M. Piau, and A. Chabot. 2004. “Continuum damage approach to asphalt concrete fatigue modeling.” J. Eng. Mech. 130 (6): 700–708. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(700).
Canestrari, F., A. Virgili, A. Graziani, and A. Stimilli. 2015. “Modeling and assessment of self-healing and thixotropy properties for modified binders.” Int. J. Fatigue 70 (Jan): 351–360. https://doi.org/10.1016/j.ijfatigue.2014.08.004.
Castelo Branco, V. T. F., E. Masad, A. Bhasin, and D. N. Little. 2008. “Fatigue analysis of asphalt mixtures independent of mode of loading.” Transp. Res. Rec. 2057 (1): 149–156. https://doi.org/10.3141/2057-18.
Castillo, D., S. Caro, M. Darabi, and E. Masad. 2015. “Studying the effect of microstructural properties on the mechanical degradation of asphalt mixtures.” Constr. Build. Mater. 93 (Sep): 70–83. https://doi.org/10.1016/j.conbuildmat.2015.05.108.
Chen, Y., R. Simms, C. Koh, G. Lopp, and R. Roque. 2013. “Development of a test method for evaluation and quantification of healing in asphalt mixture.” Road Mater. Pavement Des. 14 (4): 901–920. https://doi.org/10.1080/14680629.2013.844196.
Coleri, E., J. T. Harvey, K. Yang, and J. M. Boone. 2012. “A micromechanical approach to investigate asphalt concrete rutting mechanisms.” Constr. Build. Mater. 30 (May): 36–49. https://doi.org/10.1016/j.conbuildmat.2011.11.041.
Coleri, E., J. T. Harvey, K. Yang, and J. M. Boone. 2013. “Micromechanical investigation of open-graded asphalt friction courses’ rutting mechanisms.” Constr. Build. Mater. 44 (Jul): 25–34. https://doi.org/10.1016/j.conbuildmat.2013.03.027.
Dai, Q., Z. Wang, and M. R. M. Hasan. 2013. “Investigation of induction healing effects on electrically conductive asphalt mastic and asphalt concrete beams through fracture-healing tests.” Constr. Build. Mater. 49 (Dec): 729–737. https://doi.org/10.1016/j.conbuildmat.2013.08.089.
Darabi, M. K., R. K. Abu Al-Rub, and D. N. Little. 2012. “A continuum damage mechanics framework for modeling micro-damage healing.” Int. J. Solids Struct. 49 (3): 492–513. https://doi.org/10.1016/j.ijsolstr.2011.10.017.
Darabi, M. K., R. K. Abu Al-Rub, E. A. Masad, and D. N. Little. 2013. “Constitutive modeling of fatigue damage response of asphalt concrete materials with consideration of micro-damage healing.” Int. J. Solids Struct. 50 (19): 2901–2913. https://doi.org/10.1016/j.ijsolstr.2013.05.007.
Das, P. K., N. Kringos, V. Wallqvist, and B. Birgisson. 2013. “Micromechanical investigation of phase separation in bitumen by combining atomic force microscopy with differential scanning calorimetry results.” Supplement, Road Mater. Pavement Des. 14 (S1): 25–37. https://doi.org/10.1080/14680629.2013.774744.
Di Benedetto, H., C. de La Roche, H. Baaj, A. Pronk, and R. Lundström. 2004. “Fatigue of bituminous mixtures.” Mater. Struct. 37 (3): 202–216. https://doi.org/10.1007/BF02481620.
Di Benedetto, H., Q. T. Nguyen, and C. Sauzéat. 2011. “Nonlinearity, heating, fatigue and thixotropy during cyclic loading of asphalt mixtures.” Road Mater. Pavement Des. 12 (1): 129–158. https://doi.org/10.1080/14680629.2011.9690356.
Diesendruck, C. E., N. R. Sottos, J. S. Moore, and S. R. White. 2015. “Biomimetic self-healing.” Angew. Chem. Int. Ed. 54 (36): 10428–10447. https://doi.org/10.1002/anie.201500484.
García, Á. 2012. “Self-healing of open cracks in asphalt mastic.” Fuel 93 (Mar): 264–272. https://doi.org/10.1016/j.fuel.2011.09.009.
García, A., M. Bueno, J. Norambuena-Contreras, and M. N. Partl. 2013. “Induction healing of dense asphalt concrete.” Constr. Build. Mater. 49 (Dec): 1–7. https://doi.org/10.1016/j.conbuildmat.2013.07.105.
Garcia, A., J. Jelfs, and C. J. Austin. 2015. “Internal asphalt mixture rejuvenation using capsules.” Constr. Build. Mater. 101 (Dec): 309–316. https://doi.org/10.1016/j.conbuildmat.2015.10.062.
García, A., J. Norambuena-Contreras, M. Bueno, and M. N. Partl. 2015. “Single and multiple healing of porous and dense asphalt concrete.” J. Intell. Mater. Syst. Struct. 26 (4): 425–433. https://doi.org/10.1177/1045389X14529029.
Garcia, A., S. Salih, and B. Gómez-Meijide. 2020. “Optimum moment to heal cracks in asphalt roads by means electromagnetic induction.” Constr. Build. Mater. 238 (Mar): 117627. https://doi.org/10.1016/j.conbuildmat.2019.117627.
García, Á., E. Schlangen, and M. van de Ven. 2011. “Properties of capsules containing rejuvenators for their use in asphalt concrete.” Fuel 90 (2): 583–591. https://doi.org/10.1016/j.fuel.2010.09.033.
García, Á., E. Schlangen, M. van de Ven, and Q. Liu. 2012. “A simple model to define induction heating in asphalt mastic.” Constr. Build. Mater. 31 (Jun): 38–46. https://doi.org/10.1016/j.conbuildmat.2011.12.046.
Garcia-Hernández, A., S. Salih, I. Ruiz-Riancho, J. Norambuena-Contreras, R. Hudson-Griffiths, and B. Gomez-Meijide. 2020. “Self-healing of reflective cracks in asphalt mixtures by the action of encapsulated agents.” Constr. Build. Mater. 252 (Aug): 118929. https://doi.org/10.1016/j.conbuildmat.2020.118929.
Gaskin, J. 2013. On bitumen microstructure and the effects of crack healing. Nottingham, UK: Univ. of Nottingham.
Gómez-Meijide, B., H. Ajam, P. Lastra-González, and A. Garcia. 2016. “Effect of air voids content on asphalt self-healing via induction and infrared heating.” Constr. Build. Mater. 126 (Nov): 957–966. https://doi.org/10.1016/j.conbuildmat.2016.09.115.
Grossegger, D., and A. Garcia. 2019. “Influence of the thermal expansion of bitumen on asphalt self-healing.” Appl. Therm. Eng. 156 (Jun): 23–33. https://doi.org/10.1016/j.applthermaleng.2019.04.034.
Grossegger, D., B. Gomez-Meijide, S. Vansteenkiste, and A. Garcia. 2018. “Influence of rheological and physical bitumen properties on heat-induced self-healing of asphalt mastic beams.” Constr. Build. Mater. 182 (Sep): 298–308. https://doi.org/10.1016/j.conbuildmat.2018.06.148.
Hamzah, M., and M. Hasan. 2011. “Proportion and particle size distribution of fine aggregates extracted from the drained binder in a binder drainage test.” Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 5: 269–272.
Hamzah, M. O., M. R. M. Hasan, and M. van de Ven. 2012. “Permeability loss in porous asphalt due to binder creep.” Constr. Build. Mater. 30 (May): 10–15. https://doi.org/10.1016/j.conbuildmat.2011.11.038.
Hasheminejad, N., C. Vuye, A. Margaritis, B. Ribbens, G. Jacobs, J. Blom, W. Van den bergh, J. Dirckx, and S. Vanlanduit. 2019. “Investigation of crack propagation and healing of asphalt concrete using digital image correlation.” Appl. Sci. 9 (12): 2459. https://doi.org/10.3390/app9122459.
Jing’Chen, Y., Z. Hang, and S. Li. 2019. “Study on fatigue self-healing properties of basalt fiber asphalt mixture.” In Proc., Journal of Physics: Conf. Series, 22048. IOP.
Karki, P., A. Bhasin, and B. S. Underwood. 2016. “Fatigue performance prediction of asphalt composites subjected to cyclic loading with intermittent rest periods.” Transp. Res. Rec. 2576 (1): 72–82. https://doi.org/10.3141/2576-08.
Khosravi, H., S. M. Abtahi, B. Koosha, and M. Manian. 2013. “An analytical–empirical investigation of the bleeding mechanism of asphalt mixes.” Constr. Build. Mater. 45 (Aug): 138–144. https://doi.org/10.1016/j.conbuildmat.2013.04.004.
Kim, B., and R. Roque. 2006. “Evaluation of healing property of asphalt mixtures.” Transp. Res. Rec. 1970 (1): 84–91. https://doi.org/10.1177/0361198106197000108.
Kim, Y. R., D. N. Little, and F. C. Benson. 1990. “Chemical and mechanical evaluation on healing mechanism of asphalt concrete (with discussion).” J. Assoc. Asphalt Paving Technol. 59: 240–276.
Lee, H., Y. R. Kim, and S. Lee. 2003. “Prediction of asphalt mix fatigue life with viscoelastic material properties.” Transp. Res. Rec. 1832 (1): 139–147. https://doi.org/10.3141/1832-17.
Lee, H.-J., and Y. R. Kim. 1998. “Viscoelastic continuum damage model of asphalt concrete with healing.” J. Eng. Mech. 124 (11): 1224–1232.
Lesueur, D. 2009. “The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification.” Adv. Colloid Interface Sci. 145 (1): 42–82. https://doi.org/10.1016/j.cis.2008.08.011.
Li, C., S. Wu, G. Tao, and Y. Xiao. 2018. “Initial self-healing temperatures of asphalt mastics based on flow behavior index.” Materials 11 (6): 917. https://doi.org/10.3390/ma11060917.
Li, K., M. Huang, H. Zhong, and B. Li. 2019. “Comprehensive evaluation of fatigue performance of modified asphalt mixtures in different fatigue tests.” Appl. Sci. 9 (9): 1850. https://doi.org/10.3390/app9091850.
Li, R., P. Karki, and P. Hao. 2020. “Fatigue and self-healing characterization of asphalt composites containing rock asphalts.” Constr. Build. Mater. 230 (Jan): 116835. https://doi.org/10.1016/j.conbuildmat.2019.116835.
Li, Y., and J. B. Metcalf. 2002. “Crack Initiation model from asphalt slab tests.” J. Mater. Civ. Eng. 14 (4): 303–310. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:4(303).
Little, D. N., and A. Bhasin. 2007. “Exploring mechanism of healing in asphalt mixtures and quantifying its impact.” In Self healing materials, 205–218. Dordrecht, Netherlands: Springer.
Little, D. N., R. L. Lytton, D. Williams, and Y. R. Kim. 1998. An analysis of the mechanism of microdamage healing based on the application of micromechanics first principles of fracture and healing. Lino Lakes, MN: Association of Asphalt Paving Technologists.
Liu, H., X. Yang, C. Xia, J. Zheng, T. Huang, and S. Lv. 2019. “Nonlinear fatigue damage model of asphalt mixture based on dynamic modulus and residual strength decay.” Materials 12 (14): 2236. https://doi.org/10.3390/ma12142236.
Liu, Q., E. Schlangen, Á. García, and M. van de Ven. 2010. “Induction heating of electrically conductive porous asphalt concrete.” Constr. Build. Mater. 24 (7): 1207–1213. https://doi.org/10.1016/j.conbuildmat.2009.12.019.
Liu, Q., E. Schlangen, and M. van de Ven. 2012a. “Induction healing of porous asphalt concrete beams on an elastic foundation.” J. Mater. Civ. Eng. 25 (7): 880–885. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000677.
Liu, Q., E. Schlangen, M. van de Ven, G. van Bochove, and J. van Montfort. 2012b. “Evaluation of the induction healing effect of porous asphalt concrete through four point bending fatigue test.” Constr. Build. Mater. 29 (Apr): 403–409. https://doi.org/10.1016/j.conbuildmat.2011.10.058.
Liu, Q., S. Wu, and E. Schlangen. 2013. “Induction heating of asphalt mastic for crack control.” Constr. Build. Mater. 41 (Apr): 345–351. https://doi.org/10.1016/j.conbuildmat.2012.11.075.
Luan, L. Q., and X. G. Tian. 2012. “Fatigue life analysis of asphalt mixture coupling with loading intermittent time.” In Proc., Applied Mechanics and Materials, 3852–3858. Trans Tech.
Lutes, L. D., M. Corazao, S.-L. J. Hu, and J. Zimmerman. 1984. “Stochastic fatigue damage accumulation.” J. Struct. Eng. 110 (11): 2585–2601. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:11(2585).
Lv, Q., W. Huang, X. Zhu, and F. Xiao. 2017. “On the investigation of self-healing behavior of bitumen and its influencing factors.” Mater. Des. 117 (Mar): 7–17. https://doi.org/10.1016/j.matdes.2016.12.072.
Lv, S., C. Liu, D. Chen, J. Zheng, Z. You, and L. You. 2018. “Normalization of fatigue characteristics for asphalt mixtures under different stress states.” Constr. Build. Mater. 177 (Jul): 33–42. https://doi.org/10.1016/j.conbuildmat.2018.05.109.
Lytton, R. L. 2004. “Adhesive fracture in asphalt concrete mixtures.” In Asphalt technology handbook, edited by J. Youtcheff. Monticello, NY: Marcel Dekker.
Mangiafico, S., C. Sauzeat, H. Di Benedetto, S. Pouget, F. Olard, and L. Planque. 2015. “Quantification of biasing effects during fatigue tests on asphalt mixes: non-linearity, self-heating and thixotropy.” Road Mater. Pavement Des. 16 (S2): 73–99. https://doi.org/10.1080/14680629.2015.1077000.
Masson, J. F., P. Collins, and G. Polomark. 2005. “Steric hardening and the ordering of asphaltenes in bitumen.” Energy Fuels 19 (1): 120–122. https://doi.org/10.1021/ef0498667.
Mateos, A., J. P. Ayuso, and B. C. Jáuregui. 2012. “Evolution of asphalt mixture stiffness under combined effects of damage, aging, and densification under traffic.” Transp. Res. Rec. 2304 (1): 185–194. https://doi.org/10.3141/2304-21.
Mazzoni, G., A. Stimilli, and F. Canestrari. 2016. “Self-healing capability and thixotropy of bituminous mastics.” Int. J. Fatigue 92 (Nov): 8–17. https://doi.org/10.1016/j.ijfatigue.2016.06.028.
Mazzoni, G., A. Stimilli, F. Cardone, and F. Canestrari. 2017. “Fatigue, self-healing and thixotropy of bituminous mastics including aged modified bitumens and different filler contents.” Constr. Build. Mater. 131 (Jan): 496–502. https://doi.org/10.1016/j.conbuildmat.2016.11.093.
Mazzoni, G., A. Virgili, and F. Canestrari. 2019. “Influence of different fillers and SBS modified bituminous blends on fatigue, self-healing and thixotropic performance of mastics.” Road Mater. Pavement Des. 20 (3): 656–670. https://doi.org/10.1080/14680629.2017.1417150.
Menozzi, A., A. Garcia, M. N. Partl, G. Tebaldi, and P. Schuetz. 2015. “Induction healing of fatigue damage in asphalt test samples.” Constr. Build. Mater. 74 (Jan): 162–168. https://doi.org/10.1016/j.conbuildmat.2014.10.034.
Mewis, J., and N. J. Wagner. 2009. “Thixotropy.” Adv. Colloid Interface Sci. 147 (Mar): 214–227. https://doi.org/10.1016/j.cis.2008.09.005.
Moghadas Nejad, F. M., H. Sorkhabi, and M. M. Karimi. 2016. “Experimental investigation of rest time effect on permanent deformation of asphalt concrete.” J. Mater. Civ. Eng. 28 (5): 06015016. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001498.
Mohamed, E. H. H., A. O. A. El Halim, and G. J. Kennepohl. 1993. “Assessment of the influence of compaction method on asphalt concrete resistance to moisture damage.” Constr. Build. Mater. 7 (3): 149–156. https://doi.org/10.1016/0950-0618(93)90052-E.
Moreno-Navarro, F., P. Ayar, M. Sol-Sánchez, and M. C. Rubio-Gámez. 2017. “Exploring the recovery of fatigue damage in bituminous mixtures at macro-crack level: The influence of temperature, time, and external loads.” Supplement, Road Mater. Pavement Des. 18 (S2): 293–303. https://doi.org/10.1080/14680629.2017.1305149.
Moreno-Navarro, F., and M. C. Rubio-Gámez. 2016. “A review of fatigue damage in bituminous mixtures: Understanding the phenomenon from a new perspective.” Constr. Build. Mater. 113 (Jun): 927–938. https://doi.org/10.1016/j.conbuildmat.2016.03.126.
Moreno-Navarro, F., M. Sol-Sánchez, and M. C. Rubio-Gámez. 2015. “Exploring the recovery of fatigue damage in bituminous mixtures: the role of healing.” Road Mater. Pavement Des. 16 (S1): 75–89. https://doi.org/10.1080/14680629.2015.1029706.
Nahar, S. N., A. J. M. Schmets, A. Scarpas, and G. Schitter. 2013a. “Temperature and thermal history dependence of the microstructure in bituminous materials.” Eur. Polym. J. 49 (8): 1964–1974. https://doi.org/10.1016/j.eurpolymj.2013.03.027.
Nahar, S. N., A. J. M. Schmets, A. Scarpas, and G. Schitter. 2013b. “Temperature induced healing in strained bituminous materials observed by atomic force microscopy.” In ICSHM 2013: Proc., 4th Int. Conf. on Self-Healing Materials. Ghent, Belgium: Magnel Laboratory for Concrete Research.
Norambuena-Contreras, J., and A. Garcia. 2016. “Self-healing of asphalt mixture by microwave and induction heating.” Mater. Des. 106 (Sep): 404–414. https://doi.org/10.1016/j.matdes.2016.05.095.
Norambuena-Contreras, J., E. Yalcin, A. Garcia, T. Al-Mansoori, M. Yilmaz, and R. Hudson-Griffiths. 2018. “Effect of mixing and ageing on the mechanical and self-healing properties of asphalt mixtures containing polymeric capsules.” Constr. Build. Mater. 175 (Jun): 254–266. https://doi.org/10.1016/j.conbuildmat.2018.04.153.
Pearson, D. 2011. Deterioration and maintenance of pavements. London: ICE.
Pérez-Jiménez, F., R. Botella, and R. Miró. 2012a. “Damage and thixotropy in asphalt mixture and binder fatigue tests.” Transp. Res. Rec. 2293 (1): 8–17. https://doi.org/10.3141/2293-02.
Pérez-Jiménez, F. E., R. Botella, R. Miró, F. E. Perez-Jimenez, R. Botella, and R. Miró. 2012b. “Differentiating between damage and thixotropy in asphalt binder’s fatigue tests.” Constr. Build. Mater. 31 (Jun): 212–219. https://doi.org/10.1016/j.conbuildmat.2011.12.098.
Phan, T. M., D.-W. Park, and T. H. M. Le. 2018. “Crack healing performance of hot mix asphalt containing steel slag by microwaves heating.” Constr. Build. Mater. 180 (Aug): 503–511. https://doi.org/10.1016/j.conbuildmat.2018.05.278.
Praticò, F. G., and A. Casciano. 2015. “Variability of HMA characteristics and its influence on pay adjustment.” J. Civ. Eng. Manage. 21 (1): 119–130. https://doi.org/10.3846/13923730.2013.802713.
Qiu, J., M. van de Ven, and A. Molenaar. 2012a. “Crack-healing investigation in bituminous materials.” J. Mater. Civ. Eng. 25 (7): 864–870. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000744.
Qiu, J., M. van de Ven, S. Wu, J. Yu, and A. Molenaar. 2012b. “Evaluating self healing capability of bituminous mastics.” Exp. Mech. 52 (8): 1163–1171. https://doi.org/10.1007/s11340-011-9573-1.
Qiu, J., M. F. C. van de Ven, S. P. Wu, J. Y. Yu, and A. A. A. Molenaar. 2011. “Investigating self healing behaviour of pure bitumen using dynamic shear rheometer.” Fuel 90 (8): 2710–2720. https://doi.org/10.1016/j.fuel.2011.03.016.
Rathod, V., O. P. Yadav, A. Rathore, and R. Jain. 2011. “Probabilistic modeling of fatigue damage accumulation for reliability prediction.” Int. J. Qual. Stat. Reliab. 2011: 1–10. https://doi.org/10.1155/2011/718901.
Read, J., and D. Whiteoak. 2003. The shell bitumen handbook. London: Thomas Telford.
Rege, K., and D. G. Pavlou. 2017. “A one-parameter nonlinear fatigue damage accumulation model.” Int. J. Fatigue 98 (May): 234–246. https://doi.org/10.1016/j.ijfatigue.2017.01.039.
Riahi, E., F. Allou, R. Botella, F. Fakhari Tehrani, F. Dubois, J. Absi, C. Petit, and F. E. Pérez-Jiménez. 2017. “Modelling self-heating and thixotropy phenomena under the cyclic loading of asphalt.” Road Mater. Pavement Des. 18 (S2): 155–163. https://doi.org/10.1080/14680629.2017.1305145.
Sabouri, M., and Y. R. Kim. 2014. “Development of a failure criterion for asphalt mixtures under different modes of fatigue loading.” Transp. Res. Rec. 2447 (1): 117–125. https://doi.org/10.3141/2447-13.
Salih, S., B. Gómez-Meijide, M. Aboufoul, and A. Garcia. 2018. “Effect of porosity on infrared healing of fatigue damage in asphalt.” Constr. Build. Mater. 167 (Apr): 716–725. https://doi.org/10.1016/j.conbuildmat.2018.02.065.
Sarsam, S. I., and H. K. Husain. 2017. “Monitoring the impact of micro cracks healing cycles on the deformation of asphalt concrete under repeated loading.” In Proc., Int. Congress and Exhibition ‘Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology’, 287–299. New York: Springer.
Shakeel, A., A. Kirichek, and C. Chassagne. 2020. “Rheological analysis of mud from Port of Hamburg, Germany.” J. Soils Sediments 20: 2553–2562. https://doi.org/10.1007/s11368-019-02448-7.
Shan, L., Y. Tan, S. Underwood, and Y. R. Kim. 2010. “Application of thixotropy to analyze fatigue and healing characteristics of asphalt binder.” Transp. Res. Rec. 2179 (1): 85–92. https://doi.org/10.3141/2179-10.
Sharma, H., and A. K. Swamy. 2016. “Development of probabilistic fatigue curve for asphalt concrete based on viscoelastic continuum damage mechanics.” Int. J. Pavement Res. Technol. 9 (4): 270–279. https://doi.org/10.1016/j.ijprt.2016.07.004.
Shen, S., H.-M. Chiu, and H. Huang. 2010. “Characterization of fatigue and healing in asphalt binders.” J. Mater. Civ. Eng. 22 (9): 846–852. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000080.
Shen, S., and X. Lu. 2014. “Fracture healing properties of asphaltic material under controlled damage.” J. Mater. Civ. Eng. 26 (2): 275–282. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000818.
Shen, S., X. Lu, L. Liu, and C. Zhang. 2016. “Investigation of the influence of crack width on healing properties of asphalt binders at multi-scale levels.” Constr. Build. Mater. 126 (Nov): 197–205. https://doi.org/10.1016/j.conbuildmat.2016.08.107.
Shiri, S., M. Yazdani, and M. Pourgol-Mohammad. 2015. “A fatigue damage accumulation model based on stiffness degradation of composite materials.” Mater. Des. 88 (Dec): 1290–1295. https://doi.org/10.1016/j.matdes.2015.09.114.
Si, Z., D. N. Little, and R. L. Lytton. 2002. “Characterization of microdamage and healing of asphalt concrete mixtures.” J. Mater. Civ. Eng. 14 (6): 461–470. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(461).
Sun, D., T. Lin, X. Zhu, and L. Cao. 2015. “Calculation and evaluation of activation energy as a self-healing indication of asphalt mastic.” Constr. Build. Mater. 95 (Oct): 431–436. https://doi.org/10.1016/j.conbuildmat.2015.07.126.
Sun, D., G. Sun, X. Zhu, A. Guarin, B. Li, Z. Dai, and J. Ling. 2018a. “A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement.” Adv. Colloid Interface Sci. 256 (Jun): 65–93. https://doi.org/10.1016/j.cis.2018.05.003.
Sun, G., D. Sun, A. Guarin, J. Ma, F. Chen, and E. Ghafooriroozbahany. 2019. “Low temperature self-healing character of asphalt mixtures under different fatigue damage degrees.” Constr. Build. Mater. 223 (Oct): 870–882. https://doi.org/10.1016/j.conbuildmat.2019.07.040.
Sun, Y., C. Fang, D. Fan, J. Wang, and X. Yuan. 2018b. “A research on fatigue damage constitutive equation of asphalt mixture.” Math. Probl. Eng. 2018: 13. https://doi.org/10.1155/2018/3489082.
Sun, Y., T. Yan, C. Wu, X. Sun, J. Wang, and X. Yuan. 2018c. “Analysis of the fatigue crack propagation process of the stress-absorption layer of composite pavement based on reliability.” Appl. Sci. 8 (11): 2093. https://doi.org/10.3390/app8112093.
Sun, Y. H., Q. T. Liu, S. P. Wu, and F. Shang. 2014. “Microwave heating of steel slag asphalt mixture.” In Proc., Key Engineering Materials, 193–197. Trans Tech.
Suo, Z., and W. G. Wong. 2009. “Analysis of fatigue crack growth behavior in asphalt concrete material in wearing course.” Constr. Build. Mater. 23 (1): 462–468. https://doi.org/10.1016/j.conbuildmat.2007.10.025.
Tan, Y., L. Shan, Y. R. Kim, and B. S. Underwood. 2012. “Healing characteristics of asphalt binder.” Constr. Build. Mater. 27 (1): 570–577. https://doi.org/10.1016/j.conbuildmat.2011.07.006.
Tsai, B.-W., J. T. Harvey, and C. L. Monismith. 2003. “Application of Weibull theory in prediction of asphalt concrete fatigue performance.” Transp. Res. Rec. 1832 (1): 121–130. https://doi.org/10.3141/1832-15.
Tschegg, E. K., M. Jamek, and R. Lugmayr. 2011. “Fatigue crack growth in asphalt and asphalt-interfaces.” Eng. Fract. Mech. 78 (6): 1044–1054. https://doi.org/10.1016/j.engfracmech.2011.02.007.
Ukwuoma, O., and B. Ademodi. 1999. “The effects of temperature and shear rate on the apparent viscosity of Nigerian oil sand bitumen.” Fuel Process. Technol. 60 (2): 95–101. https://doi.org/10.1016/S0378-3820(99)00014-4.
Weissman, S. L., and J. L. Sackman. 1997. The mechanics of permanent deformation in asphalt-aggregate mixtures: A guide to laboratory test selection. Berkeley, CA: Symplectic Engineering.
Wu, F., and W. Yao. 2010. “A fatigue damage model of composite materials.” Int. J. Fatigue 32 (1): 134–138. https://doi.org/10.1016/j.ijfatigue.2009.02.027.
Xiang, H., L. Chen, W. Zhang, P. Liu, and Z. He. 2020. “Effect of healing conditions on fatigue-healing of asphalt binder and asphalt mixture.” J. Mater. Civ. Eng. 32 (5): 04020074. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003129.
Xu, S., A. Tabaković, X. Liu, and E. Schlangen. 2018. “Calcium alginate capsules encapsulating rejuvenator as healing system for asphalt mastic.” Constr. Build. Mater. 169 (Apr): 379–387. https://doi.org/10.1016/j.conbuildmat.2018.01.046.
Ye, L. 1989. “On fatigue damage accumulation and material degradation in composite materials.” Compos. Sci. Technol. 36 (4): 339–350. https://doi.org/10.1016/0266-3538(89)90046-8.
Yin, A., X. Yang, C. Zhang, G. Zeng, and Z. Yang. 2015. “Three-dimensional heterogeneous fracture simulation of asphalt mixture under uniaxial tension with cohesive crack model.” Constr. Build. Mater. 76 (Feb): 103–117. https://doi.org/10.1016/j.conbuildmat.2014.11.065.
Zeng, G., X. Yang, A. Yin, and F. Bai. 2014. “Simulation of damage evolution and crack propagation in three-point bending pre-cracked asphalt mixture beam.” Constr. Build. Mater. 55 (Mar): 323–332. https://doi.org/10.1016/j.conbuildmat.2014.01.058.
Zhang, J., Y. D. Wang, and Y. Su. 2019. “Fatigue damage evolution model of asphalt mixture considering influence of loading frequency.” Constr. Build. Mater. 218 (Sep): 712–720. https://doi.org/10.1016/j.conbuildmat.2019.05.029.
Zhang, Y., X. Luo, R. Luo, and R. L. Lytton. 2014. “Crack initiation in asphalt mixtures under external compressive loads.” Constr. Build. Mater. 72 (Dec): 94–103. https://doi.org/10.1016/j.conbuildmat.2014.09.009.
Zhu, H., and L. Sun. 2013. “A viscoelastic–viscoplastic damage constitutive model for asphalt mixtures based on thermodynamics.” Int. J. Plast. 40 (Jan): 81–100. https://doi.org/10.1016/j.ijplas.2012.07.005.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 6June 2021

History

Received: May 28, 2020
Accepted: Oct 19, 2020
Published online: Mar 23, 2021
Published in print: Jun 1, 2021
Discussion open until: Aug 23, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

D. Grossegger [email protected]
Researcher, School of Civil and Transportation Engineering, South China Univ. of Technology, Guangzhou 510640, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share