Technical Papers
Oct 20, 2020

Performance Evaluation of Using Waste Toner in Bituminous Material by Focusing on Aging and Moisture Susceptibility

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 1

Abstract

This study investigated the effect of waste toner as a cost-effective enhancement modifier on short-term aging and moisture resistance of asphalt binders and mixtures. Moreover, the mechanism of asphalt binder aging and moisture resistance was reviewed, aiming to provide promising evaluation methods for assessing short-term aging resistance of asphalt binders as well as moisture resistance of asphalt binders and mixtures. First, the aging resistance of neat and toner-modified asphalt (TMA) binders was evaluated using three approaches: rheological aging index (RAI), viscosity aging index (VAI), and chemical functional group indices based on data obtained from Fourier transform infrared spectroscopy (FTIR) analysis. To measure viscoelastic and viscosity characteristics of neat and TMA binders, a dynamic shear rheometer (DSR) and a viscometer were employed, respectively. Second, the moisture resistance of asphalt binders and mixtures were investigated based on analyzing the infrared spectrum and tensile strength ratio (TSR), respectively. The findings indicated that modifying binder with low percentages of waste toner enhanced the short-term aging resistance. Also, TMA binders containing 12% of waste toner presented a significant improvement in moisture resistance of asphalt binders and mixtures.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The authors declare that all data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This paper was prepared from a study conducted at Amirkabir University of Technology as a part of the research performed by the authors.

References

AASHTO. 2014. Standard method of test for resistance of compacted asphalt mixtures to moisture-induced damage. AASHTO T283. West Conshohocken, PA: ASTM.
Ahmad, M., U. A. Mannan, M. R. Islam, and R. A. Tarefder. 2018. “Chemical and mechanical changes in asphalt binder due to moisture conditioning.” Road Mater. Pavement Des. 19 (5): 1216–1229. https://doi.org/10.1080/14680629.2017.1299631.
Alsalihi, M., A. Hosseini, and A. Faheem. 2017. “Direct characterization of aging diffusion in asphalt mixtures using micro-indentation and relaxation (MIR).” In Proc., Int. Conf. on Highway Pavements and Airfield Technology 2017. Reston, VA: ASCE.
Apeagyei, A. K., J. R. Grenfell, and G. D. Airey. 2015. “Influence of aggregate absorption and diffusion properties on moisture damage in asphalt mixtures.” Supplement, Road Mater. Pavement Des. 16 (S1): 404–422. https://doi.org/10.1080/14680629.2015.1030827.
Arabzadeh, A., and M. Guler. 2019. “Thermal fatigue behavior of asphalt concrete: A laboratory-based investigation approach.” Int. J. Fatigue 121 (Apr): 229–236. https://doi.org/10.1016/j.ijfatigue.2018.11.022.
Arambula, E., E. J. Garboczi, E. Masad, and E. Kassem. 2010. “Numerical analysis of moisture vapor diffusion in asphalt mixtures using digital images.” Mater. Struct. 43 (7): 897–911. https://doi.org/10.1617/s11527-009-9554-3.
ASTM. 2014a. Standard test method for determining the complex shear modulus (G*) of bituminous mixtures using dynamic shear rheometer. ASTM D7552-09. West Conshohocken, PA: ASTM.
ASTM. 2014b. Standard test method for effect of moisture on asphalt concrete paving mixtures. D4867/D4867M-09. West Conshohocken, PA: ASTM.
ASTM. 2015a. Standard test method for marshall stability and flow of asphalt mixtures. ASTM D6927-15. West Conshohocken, PA: ASTM. https://doi.org/10.1520/D6927-15.
ASTM. 2015b. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. ASTM D4402/D4402M-15. West Conshohocken, PA: ASTM. https://doi.org/10.1520/D440_D4402M-15.
ASTM. 2019. Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test). ASTM D2872-19. West Conshohocken, PA: ASTM. https://doi.org/10.1520/D2872-19.
Azarion, Y., H. Shirmohammadi, G. H. Hamedi, and D. Saedi. 2019. “Model for predicting moisture susceptibility of asphalt mixtures based on material properties.” J. Mater. Civ. Eng. 31 (10): 04019239. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002882.
Baqersad, M., H. Ali, F. Haddadi, and I. Khakpour. 2019. “Short- and long-term rheological and chemical characteristics of nanomodified asphalt binder.” Pet. Sci. Technol. 37 (15): 1788–1799. https://doi.org/10.1080/10916466.2019.1602635.
Buchanan, M. S., and V. M. Moore. 2005. Laboratory accelerated stripping simulator for hot mix asphalt. Starkville, MS: Mississippi State Univ.
Cavalli, M. C., M. Zaumanis, E. Mazza, M. N. Partl, and L. D. Poulikakos. 2018. “Aging effect on rheology and cracking behaviour of reclaimed binder with bio-based rejuvenators.” J. Cleaner Prod. 189 (Jul): 88–97. https://doi.org/10.1016/j.jclepro.2018.03.305.
Corbett, L., and H. Schweyer. 1981. “Composition and rheology considerations in age hardening of bitumen.” In Proc., Association of Asphalt Paving Technologists. Washington, DC: Transportation Research Board.
Epps, J. A. 2000. Compatibility of a test for moisture-induced damage with Superpave volumetric mix design. Washington, DC: Transportation Research Board.
Fawcett, A. H., and T. McNally. 2001. “Blends of bitumen with polymers having a styrene component.” Polym. Eng. Sci. 41 (7): 1251–1264. https://doi.org/10.1002/pen.10826.
Fini, E. H., P. Hajikarimi, M. Rahi, and F. Moghadas Nejad. 2016. “Physiochemical, rheological, and oxidative aging characteristics of asphalt binder in the presence of mesoporous silica nanoparticles.” J. Mater. Civ. Eng. 28 (2): 04015133. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001423.
Glover, I. C. 2007. “Wet and dry aging of polymer-asphalt blends: Chemistry and performance.” Doctoral dissertation, Dept. of Chemistry, Louisiana State Univ.
Grenfell, J., N. Ahmad, Y. Liu, A. Apeagyei, D. Large, and G. Airey. 2014. “Assessing asphalt mixture moisture susceptibility through intrinsic adhesion, bitumen stripping and mechanical damage.” Road Mater. Pavement Des. 15 (1): 131–152. https://doi.org/10.1080/14680629.2013.863162.
Haghshenas, H. F., R. Rea, D. Byre, D. F. Haghshenas, G. Reinke, and M. Zaumanis. 2020. “Asphalt binder laboratory short-term aging: Effective parameters and new protocol for testing.” J. Mater. Civ. Eng. 32 (1): 04019327. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002978.
Hamedi, G. H., F. M. Nejad, and K. Oveisi. 2016. “Estimating the moisture damage of asphalt mixture modified with nano zinc oxide.” Mater. Struct. 49 (4): 1165–1174. https://doi.org/10.1617/s11527-015-0566-x.
Jahangiri, B., H. Majidifard, J. Meister, and W. G. Buttlar. 2019. “Performance evaluation of asphalt mixtures with reclaimed asphalt pavement and recycled asphalt shingles in Missouri.” Transp. Res. Rec. 2673 (2): 392–403. https://doi.org/10.1177/0361198119825638.
Kanitpong, K., and H. Bahia. 2005. “Relating adhesion and cohesion of asphalts to the effect of moisture on laboratory performance of asphalt mixtures.” Transp. Res. Rec. 1901 (1): 33–43. https://doi.org/10.1177/0361198105190100105.
Kanitpong, K., D.-W. Cho, and H. Bahia. 2006. “Effect of additives on performance of asphalt mixtures.” Proc. Inst. Civ. Eng. Constr. Mater. 159 (3): 103–110. https://doi.org/10.1680/coma.2006.159.3.103.
Kennedy, T. W., and W. V. Ping. 1991. “Comparison study of moisture damage test methods for evaluating antistripping treatments in asphalt mixtures.” Transp. Res. Rec. 1323: 94–111.
Khedmati, M., A. Khodaii, and H. Haghshenas. 2017. “A study on moisture susceptibility of stone matrix warm mix asphalt.” Constr. Build. Mater. 144 (Jul): 42–49. https://doi.org/10.1016/j.conbuildmat.2017.03.121.
Kim, Y. R., C. Castorena, Y. Wang, A. Ghanbari, and J. Jeong. 2018. Comparing performance of full-depth asphalt pavements and aggregate base pavements in NC. Raleigh, NC: NCDOT.
Lamontagne, J., P. Dumas, V. Mouillet, and J. Kister. 2001. “Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: Application to road bitumens.” Fuel 80 (4): 483–488. https://doi.org/10.1016/S0016-2361(00)00121-6.
Liu, H., L. Fu, Y. Jiao, J. Tao, and X. Wang. 2017. “Short-term aging effect on properties of sustainable pavement asphalts modified by waste rubber and diatomite.” Sustainability 9 (6): 996. https://doi.org/10.3390/su9060996.
Liu, S., A. Peng, S. Zhou, J. Wu, W. Xuan, and W. Liu. 2019. “Evaluation of the ageing behaviour of waste engine oil-modified asphalt binders.” Constr. Build. Mater. 223 (Oct): 394–408. https://doi.org/10.1016/j.conbuildmat.2019.07.020.
Lu, X., and U. Isacsson. 2000. “Artificial aging of polymer modified bitumens.” J. Appl. Polym. Sci. 76 (12): 1811–1824. https://doi.org/10.1002/(SICI)1097-4628(20000620)76:12%3C1811::AID-APP12%3E3.0.CO;2-1.
Malakooti, A., M. Maguire, and R. J. Thomas. 2018. Evaluating electrical resistivity as a performance based test for Utah bridge deck concrete. Piscataway, NJ: Center for Advanced Infrastructure and Transportation, Rutgers Univ.
Mohammadafzali, M., H. Ali, G. A. Sholar, W. A. Rilko, and M. Baqersad. 2018. “Effects of rejuvenation and aging on binder homogeneity of recycled asphalt mixtures.” J. Transp. Eng. Part B: Pavements 145 (1): 04018066. https://doi.org/10.1061/JPEODX.0000089.
Nakhaei, M., K. Naderi, A. A. Nasrekani, and D. H. Timm. 2018. “Moisture resistance study on PE-wax and EBS-wax modified warm mix asphalt using chemical and mechanical procedures.” Constr. Build. Mater. 189 (Nov): 882–889. https://doi.org/10.1016/j.conbuildmat.2018.08.216.
Notani, M. A., A. Arabzadeh, S. Satvati, M. T. Tabesh, N. G. Hashjin, S. Estakhri, and M. Alizadeh. 2020a. “Investigating the high-temperature performance and activation energy of carbon black-modified asphalt binder.” SN Appl. Sci. 2 (2): 303. https://doi.org/10.1007/s42452-020-2102-z.
Notani, M. A., P. Hajikarimi, F. M. Nejad, and A. Khodaii. 2020b. “Rutting resistance of toner-modified asphalt binder and mixture.” Int. J. Pavement Res. Technol. 13 (1): 1–9. https://doi.org/10.1007/s42947-019-0131-z.
Notani, M. A., F. Moghadas Nejad, E. H. Fini, and P. Hajikarimi. 2019. “Low-temperature performance of toner-modified asphalt binder.” J. Transp. Eng. Part B: Pavements 145 (3): 04019022. https://doi.org/10.1061/JPEODX.0000123.
Notani, M. A., F. Moghadas Nejad, A. Khodaii, and P. Hajikarimi. 2018. “Evaluating fatigue resistance of toner-modified asphalt binders using the linear amplitude sweep test.” Road Mater. Pavement Des. 20 (8): 1927–1940. https://doi.org/10.1080/14680629.2018.1474792.
Notani, M. A., and M. Mokhtarnejad. 2018. “Investigating the rheological and self-healing capability of toner-modified asphalt binder.” Proc. Inst. Civ. Eng. Constr. Mater. 173 (3): 123–131. https://doi.org/10.1680/jcoma.17.00072.
Ouyang, C., S. Wang, Y. Zhang, and Y. Zhang. 2006. “Improving the aging resistance of asphalt by addition of zinc dialkyldithiophosphate.” Fuel 85 (7–8): 1060–1066. https://doi.org/10.1016/j.fuel.2005.08.023.
Padmarekha, A., and J. M. Krishnan. 2011. “Experimental investigation on sol–gel transition of asphalt.” Int. J. Adv. Eng. Sci. Appl. Math. 3 (1–4): 131–139. https://doi.org/10.1007/s12572-011-0048-5.
Pérez, I., A. Pasandín, and J. Gallego. 2012. “Stripping in hot mix asphalt produced by aggregates from construction and demolition waste.” Waste Manage. Res. 30 (1): 3–11. https://doi.org/10.1177/0734242X10375747.
Petersen, J. C. 2000. “Chemical composition of asphalt as related to asphalt durability.” In Vol. 40 of Developments in petroleum science, 363–399. Amsterdam, Netherlands: Elsevier.
Petersen, J. C. 2009. “A review of the fundamentals of asphalt oxidation: Chemical, physicochemical, physical property, and durability relationships.” Transp. Res. Circ. (E-C140): 78. https://doi.org/10.17226/23002.
Petersen, J. C., J. F. Branthaver, R. E. Robertson, P. M. Harnsberger, J. J. Duvall, and E. K. Ensley. 1993. “Effects of physicochemical factors on asphalt oxidation kinetics.” Transp. Res. Rec. (1391): 1–10.
Pouranian, M. R., and J. E. Haddock. 2019. “A new framework for understanding aggregate structure in asphalt mixtures.” Int. J. Pavement Eng. 1–17. https://doi.org/10.1080/10298436.2019.1660340.
Pouranian, M. R., M. A. Notani, M. T. Tabesh, B. Nazeri, and M. Shishehbor. 2020. “Rheological and environmental characteristics of crumb rubber asphalt binders containing non-foaming warm mix asphalt additives.” Constr. Build. Mater. 238 (Mar): 117707. https://doi.org/10.1016/j.conbuildmat.2019.117707.
Pouranian, M. R., and M. Shishehbor. 2019. “Sustainability assessment of green asphalt mixtures: A review.” Environments 6 (6): 73. https://doi.org/10.3390/environments6060073.
Qian, G., H. Yu, X. Gong, and L. Zhao. 2019. “Impact of nano-TiO2 on the NO2 degradation and rheological performance of asphalt pavement.” Constr. Build. Mater. 218 (Sep): 53–63. https://doi.org/10.1016/j.conbuildmat.2019.05.075.
Rahbar-Rastegar, R., R. Zhang, J. E. Sias, and E. V. Dave. 2019. “Evaluation of laboratory ageing procedures on cracking performance of asphalt mixtures.” Supplement, Road Mater. Pavement Des. 20 (S2): S647–S662. https://doi.org/10.1080/14680629.2019.1633782.
Rahmani, H., H. Shirmohammadi, and G. H. Hamedi. 2018. “Effect of asphalt binder aging on thermodynamic parameters and its relationship with moisture sensitivity of asphalt mixes.” J. Mater. Civ. Eng. 30 (11): 04018278. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002453.
Roberts, F. L., P. S. Kandhal, E. R. Brown, D. Y. Lee, and T. W. Kennedy. 1991. Hot mix asphalt materials, mixture design and construction. Lanham, MD: National Asphalt Pavement Association Research and Education Foundation.
Sezavar, R., G. Shafabakhsh, and S. M. Mirabdolazimi. 2019. “New model of moisture susceptibility of nano silica-modified asphalt concrete using GMDH algorithm.” Constr. Build. Mater. 211 (Jun): 528–538. https://doi.org/10.1016/j.conbuildmat.2019.03.114.
Shishehbor, M., M. R. Pouranian, and M. G. Ramezani. 2019. “Molecular investigations on the interactions of graphene, crude oil fractions and mineral aggregates at low, medium and high temperatures.” Pet. Sci. Technol. 37 (7): 804–811. https://doi.org/10.1080/10916466.2019.1566254.
Solaimanian, M., T. W. Kennedy, and R. Tripathi. 1998. “Performance characteristics of asphalt binders and mixtures modified by waste toner.” Transp. Res. Rec. 1638 (1): 120–128. https://doi.org/10.3141/1638-14.
Soleimani, A. 2009. Use of dynamic phase angle and complex modulus for the low temperature performance grading of asphalt cements. Kingston, ON: Queen’s Univ.
Stuart, K. D. 1990. Moisture damage in asphalt mixturesA state-of-the-art report. Washington, DC: Federal Highway Administration.
Vila-Cortavitarte, M., P. Lastra-González, M. Á. Calzada-Pérez, and I. Indacoechea-Vega. 2018. “Analysis of the influence of using recycled polystyrene as a substitute for bitumen in the behaviour of asphalt concrete mixtures.” J. Cleaner Prod. 170 (Jan): 1279–1287. https://doi.org/10.1016/j.jclepro.2017.09.232.
Wang, H., X. Liu, P. Apostolidis, and T. Scarpas. 2018. “Review of warm mix rubberized asphalt concrete: Towards a sustainable paving technology.” J. Cleaner Prod. 177 (Mar): 302–314. https://doi.org/10.1016/j.jclepro.2017.12.245.
Wang, R., J. Yue, R. Li, and Y. Sun. 2019a. “Evaluation of aging resistance of asphalt binder modified with graphene oxide and carbon nanotubes.” J. Mater. Civ. Eng. 31 (11): 04019274. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002934.
Wang, Y. D., A. Ghanbari, B. S. Underwood, and Y. R. Kim. 2019b. “Development of a performance-volumetric relationship for asphalt mixtures.” Transp. Res. Rec. 2673 (6): 416–430. https://doi.org/10.1177/0361198119845364.
Wei, C., H. Duan, H. Zhang, and Z. Chen. 2019. “Influence of SBS modifier on aging behaviors of SBS-modified asphalt.” J. Mater. Civ. Eng. 31 (9): 04019184. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002832.
Yao, H., Z. You, L. Li, S. W. Goh, C. H. Lee, Y. K. Yap, and X. Shi. 2013. “Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy.” Constr. Build. Mater. 38 (Jan): 327–337. https://doi.org/10.1016/j.conbuildmat.2012.08.004.
Yeganeh, S. F., A. Mahmoudzadeh, M. A. Azizpour, and A. Golroo. 2019. “Validation of smartphone based pavement roughness measures.” Preprint, submitted February 27, 2019. https://arxiv.org/abs/1902.10699.
Yildirim, Y., D. Hazlett, and R. Davio. 2004. “Toner-modified asphalt demonstration projects.” Resour. Conserv. Recycl. 42 (3): 295–308. https://doi.org/10.1016/j.resconrec.2004.04.008.
Yildirim, Y., and T. W. Kennedy. 2003. Binder designs for the toner-modified asphalt demonstration projects. Austin, TX: Center for Transportation Research.
Yu, X., Y. Wang, Y. Luo, and L. Yin. 2013. “The effects of salt on rheological properties of asphalt after long-term aging.” Sci. World J. 2013: 9. https://doi.org/10.1155/2013/921090.
Zhang, J., G. D. Airey, J. Grenfell, and A. K. Apeagyei. 2017. “Moisture damage evaluation of aggregate–bitumen bonds with the respect of moisture absorption, tensile strength and failure surface.” Road Mater. Pavement Des. 18 (4): 833–848. https://doi.org/10.1080/14680629.2017.1286441.
Zhang, R., J. E. Sias, E. V. Dave, and R. Rahbar-Rastegar. 2019a. “Impact of aging on the viscoelastic properties and cracking behavior of asphalt mixtures.” Transp. Res. Rec. 2673 (6): 406–415. https://doi.org/10.1177/0361198119846473.
Zhang, R., Z. You, H. Wang, M. Ye, Y. K. Yap, and C. Si. 2019b. “The impact of bio-oil as rejuvenator for aged asphalt binder.” Constr. Build. Mater. 196 (Jan): 134–143. https://doi.org/10.1016/j.conbuildmat.2018.10.168.
Zhu, W., X. Chen, L. J. Struble, and E.-H. Yang. 2018. “Characterization of calcium-containing phases in alkali-activated municipal solid waste incineration bottom ash binder through chemical extraction and deconvoluted Fourier transform infrared spectra.” J. Cleaner Prod. 192 (Aug): 782–789. https://doi.org/10.1016/j.jclepro.2018.05.049.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 1January 2021

History

Received: Nov 24, 2019
Accepted: May 26, 2020
Published online: Oct 20, 2020
Published in print: Jan 1, 2021
Discussion open until: Mar 20, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Lyles School of Civil Engineering, Purdue Univ., West Lafayette, IN 47907-2051 (corresponding author). ORCID: https://orcid.org/0000-0002-4856-656X. Email: [email protected]
Pouria Hajikarimi, Ph.D. [email protected]
Assistant Professor, Dept. of Civil and Environmental Engineering, Amirkabir Univ. of Technology, Tehran 158754413, Iran. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, Amirkabir Univ. of Technology, Tehran 158754413, Iran. ORCID: https://orcid.org/0000-0003-3830-4555. Email: [email protected]
Ali Khodaii, Ph.D. [email protected]
Professor, Dept. of Civil and Environmental Engineering, Amirkabir Univ. of Technology, Tehran 158754413, Iran. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share