State-of-the-Art Reviews
Aug 22, 2019

State of the Art on Sensing Capability of Poorly or Nonconductive Matrixes with a Special Focus on Portland Cement–Based Materials

Publication: Journal of Materials in Civil Engineering
Volume 31, Issue 11

Abstract

Concrete, a well-established and well-characterized building material, is also the most used building material in the world. However, many old and new-build structures suffer from premature failures due to extensive deterioration and decreased load-bearing capacity. Consequently, structural monitoring systems are essential to ensure safe usage of concrete structures within and beyond their designed life. Traditional monitoring systems are based on metallic sensors installed in crucial locations throughout the structure. Unfortunately, most of them have relatively low reliability and a very short life span when exposed to often very harsh environments. The ideal solution is therefore to develop a smart concrete having self-sensing capability. A number of studies have shown that conductive cementitious matrixes will undergo changes in their electrical resistivity with variations of stresses and strains or development of microcracking. This behavior can be used as a reliable tool to measure changes. This review provides a comprehensive overview of several nonconductive matrixes, with a special focus on portland cement–based materials, showing self-sensing capabilities by description of detection mechanisms, sensing capabilities, limitations, and potential applications.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to thank the Swedish Government Agency (VINNOVA) and Swedish Transport Administration (Trafikverket) for financial support.

References

Aggelis, D. G., N. Alver, and H. K. Chai. 2014. “Health monitoring of civil infrastructure and materials.” Sci. World J. 2014: 1–2. https://doi.org/10.1155/2014/435238.
Al-Dahawi, A., M. H. Sarwary, O. Öztürk, G. Yildirim, A. Akin, M. Şahmaran, and M. Lachemi. 2016. “Electrical percolation threshold of cementitious composites possessing self-sensing functionality incorporating different carbon-based materials.” Smart Mater. Struct. 25 (10): 105005. https://doi.org/10.1088/0964-1726/25/10/105005.
Ausanio, G., A. C. Barone, C. Hison, V. Iannotti, G. Mannara, and L. Lanotte. 2005. “Magnetoelastic sensor application in civil buildings monitoring.” Sens. Actuators, A 123–124 (Sep): 290–295. https://doi.org/10.1016/j.sna.2005.03.027.
Awaja, F., S. Zhang, M. Tripathi, A. Nikiforov, and N. Pugno. 2016. “Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair.” Prog. Mater. Sci. 83 (Oct): 536–573. https://doi.org/10.1016/j.pmatsci.2016.07.007.
Azhari, F., and N. Banthia. 2012. “Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing.” Cem. Concr. Compos. 34 (7): 866–873. https://doi.org/10.1016/j.cemconcomp.2012.04.007.
Baeza, F. J., D. D. L. Chung, E. Zornoza, L. G. Andión, and P. Garcés. 2010. “Triple percolation in concrete reinforced with carbon fiber.” ACI Mater. J. 107 (4): 396–402. https://www.doi.org/10.14359/51663866.
Bajare, D., G. Bumanis, G. Sahmenko, and J. Justs. 2012. “High performance and conventional concrete properties affected by ashes obtained from different type of grasses.” In Proc., 12th Int. Conf. on Recent Advances in Concrete Technology and Sustainability Issues. New York: Curran Associates.
Banthia, N., S. Djeridane, and M. Pigeon. 1992. “Electrical resistivity of carbon and steel micro-fiber reinforced cements.” Cem. Concr. Res. 22 (5): 804–814. https://doi.org/10.1016/0008-8846(92)90104-4.
Bhatia, R., V. Prasad, and R. Menon. 2010. “Characterization, electrical percolation and magnetization studies of polystyrene/multiwall carbon nanotube composite films.” Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 175 (3): 189–194. https://doi.org/10.1016/j.mseb.2010.07.025.
Boyd, A. J., and J. Skalny. 2007. “Environmental deterioration of concrete.” In Environmental deterioration of materials, 143–184. Southampton, UK: WIT Press.
Cabrera, J. G. 1996. “Deterioration of concrete due to reinforcement steel corrosion.” Cem. Concr. Compos. 18 (1): 47–59. https://doi.org/10.1016/0958-9465(95)00043-7.
Calkins, F. T., A. B. Flatau, and M. J. Dapino. 2007. “Overview of magnetostrictive sensor technology.” J. Intell. Mater. Syst. Struct. 18 (10): 1057–1066. https://doi.org/10.1177/1045389X06072358.
Chalioris, C. E., C. G. Karayannis, G. M. Angeli, N. A. Papadopoulos, M. J. Favvata, and C. P. Providakis. 2016. “Applications of smart piezoelectric materials in a wireless admittance monitoring system (WiAMS) to structures-tests in RC elements.” Case Stud. Constr. Mater. 5 (Dec): 1–18. https://doi.org/10.1016/j.cscm.2016.03.003.
Chang, P. C., A. Flatau, and S. C. Liu. 2003. “Review paper: Health monitoring of civil infrastructure.” Struct. Health Monit.: Int. J. 2 (3): 257–267. https://doi.org/10.1177/1475921703036169.
Chen, P. W., and D. D. L. Chung. 1993. “Concrete reinforced with up to 0.2 vol% of short carbon fibres.” Composites 24 (1): 33–52. https://doi.org/10.1016/0010-4361(93)90261-6.
Chen, P. W., and D. D. L. Chung. 1995. “Improving the electrical conductivity of composites comprised of short conducting fibers in a nonconducting matrix: The addition of a nonconducting particulate filler.” J. Electron. Mater. 24 (1): 47–51. https://doi.org/10.1007/BF02659726.
Chi, J. M., R. Huang, and C. C. Yang. 2002. “Effects of carbonation on mechanical properties and durability of concrete using accelerated testing method.” J. Mar. Sci. Technol. 10 (1): 14–20.
Chiarello, M., and R. Zinno. 2005. “Electrical conductivity of self-monitoring CFRC.” Cem. Concr. Compos. 27 (4): 463–469. https://doi.org/10.1016/j.cemconcomp.2004.09.001.
Chung, D. D. L. 1998. “Self-monitoring structural materials.” Mater. Sci. Eng. R: Rep. 22 (2): 57–78. https://doi.org/10.1016/S0927-796X(97)00021-1.
Chung, D. D. L. 2002a. “Composites get smart.” Mater. Today 5 (1): 30–35. https://doi.org/10.1016/S1369-7021(02)05140-4.
Chung, D. D. L. 2002b. “Piezoresistive cement-based materials for strain sensing.” J. Intell. Mater. Syst. Struct. 13 (9): 599–609. https://doi.org/10.1106/104538902031861.
Chung, D. D. L., and X. Fu. 1996. “Self monitoring of fatigue damage in carbon fiber reinforced cement.” Cem. Concr. Res. 26 (1): 15–20. https://doi.org/10.1016/0008-8846(95)00184-0.
Cwirzen, A., K. Habermehl-Cwirzen, and V. Penttala. 2008. “Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites.” Adv. Cem. Res. 20 (2): 65–73. https://doi.org/10.1680/adcr.2008.20.2.65.
Darwin, D., J. A. Browning, L. Gong, and S. R. Hughes. 2008. “Effects of deicers on concrete deterioration.” ACI Mater. J. 105 (6): 622–627.
Dong, X., J. Ou, and X. Guan. 2011. “Applications of magnetostrictive materials in civil structures: A review.” In Proc., 6th Int. Workshop on Advanced Smart Materials and Smart Structures Technology. Champaign, IL: Univ. of Illinois at Urbana–Champaign.
Fidanboylu, K., and H. S. Efendioglu. 2009. “Fiber optic sensors and their applications.” In Proc., 5th Int. Advanced Technologies Symp., 1–6. Karabük, Turkey: Karabük Univ.
Gao, D., M. Sturm, and Y. L. Mo. 2009. “Electrical resistance of carbon-nanofiber concrete.” Smart Mater. Struct. 18 (9): 095039. https://doi.org/10.1088/0964-1726/18/9/095039.
Georgousis, G., et al. 2015. “Strain sensing in polymer/carbon nanotube composites by electrical resistance measurement.” Composites Part B 68 (Jan): 162–169. https://doi.org/10.1016/j.compositesb.2014.08.027.
Guadagno, L., B. De Vivo, A. Di Bartolomeo, P. Lamberti, A. Sorrentino, V. Tucci, L. Vertuccio, and V. Vittoria. 2011. “Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites.” Carbon 49 (6): 1919–1930. https://doi.org/10.1016/j.carbon.2011.01.017.
Guadagno, L., M. Raimondo, V. Vittoria, L. Vertuccio, K. Lafdi, B. De Vivo, P. Lamberti, G. Spinelli, and V. Tucci. 2013. “The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins.” Nanotechnology 24 (30): 305704. https://doi.org/10.1088/0957-4484/24/30/305704.
Guthy, C., F. Du, S. Brand, K. I. Winey, and J. E. Fischer. 2007. “Thermal conductivity of single-walled carbon nanotube/PMMA nanocomposites.” J. Heat Transfer 129 (8): 1096–1099. https://doi.org/10.1115/1.2737484.
Han, B., S. Ding, and X. Yu. 2015a. “Intrinsic self-sensing concrete and structures: A review.” Measurement 59 (Jan): 110–128. https://doi.org/10.1016/j.measurement.2014.09.048.
Han, B., S. Sun, S. Ding, L. Zhang, X. Yu, and J. Ou. 2015b. “Review of nanocarbon-engineered multifunctional cementitious composites.” Composites Part A 70 (Mar): 69–81. https://doi.org/10.1016/j.compositesa.2014.12.002.
Han, B., X. Yu, and E. Kwon. 2009. “A self-sensing carbon nanotube/cement composite for traffic monitoring.” Nanotechnology 20 (44): 445501. https://doi.org/10.1088/0957-4484/20/44/445501.
Hata, K., D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima. 2004. “Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes.” Science 306 (5700): 1362–1364. https://doi.org/10.1126/science.1104962.
Hattori, S., T. Shimada, and K. Matsuhashib. 2001. “Highly accurate low frequency elastic wave measurement using magnetostrictive devices.” NDT E Int. 34 (6): 373–379. https://doi.org/10.1016/S0963-8695(01)00003-2.
Helal, J., M. Sofi, and P. Mendis. 2015. “Non-destructive testing of concrete: A review of methods.” Electron. J. Struct. Eng. 14 (1): 97–105.
Hison, C., G. Ausanio, A. C. Barone, V. Iannotti, E. Pepe, and L. Lanotte. 2005. “Magnetoelastic sensor for real-time monitoring of elastic deformation and fracture alarm.” Sens. Actuators, A 125 (1): 10–14. https://doi.org/10.1016/j.sna.2005.05.019.
Housner, G. W., L. A. Bergman, T. K. Caughey, A. G. Chassiakos, R. O. Claus, S. F. Masri, R. E. Skelton, T. T. Soong, B. F. Spencer, and J. T. P. Yao. 1997. “Structural control: Past, present, and future.” J. Eng. Mech. 123 (9): 897–971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897).
Hristoforou, E., and A. Ktena. 2007. “Magnetostriction and magnetostrictive materials for sensing applications.” J. Magn. Magn. Mater. 316 (2): 372–378. https://doi.org/10.1016/j.jmmm.2007.03.025.
Iijima, S. 1991. “Helical microtubes of graphitic carbon.” Nature 354 (6348): 56–58. https://doi.org/10.1038/354056a0.
Konsta-Gdoutos, M. S., and C. A. Aza. 2014. “Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures.” Cem. Concr. Compos. 53 (Oct): 162–169. https://doi.org/10.1016/j.cemconcomp.2014.07.003.
Konsta-Gdoutos, M. S., Z. S. Metaxa, and S. P. Shah. 2010. “Highly dispersed carbon nanotube reinforced cement based materials.” Cem. Concr. Res. 40 (7): 1052–1059. https://doi.org/10.1016/j.cemconres.2010.02.015.
Kuronuma, Y., T. Takeda, Y. Shindo, F. Narita, and Z. Wei. 2012. “Electrical resistance-based strain sensing in carbon nanotube/polymer composites under tension: Analytical modeling and experiments.” Compos. Sci. Technol. 72 (14): 1678–1682. https://doi.org/10.1016/j.compscitech.2012.07.001.
Leal-Junior, A., A. Frizera-Neto, C. Marques, and M. Pontes. 2018. “A polymer optical fiber temperature sensor based on material features.” Sensors 18 (2): 301. https://doi.org/10.3390/s18010301.
Lee, S. J., I. You, G. Zi, and D. Y. Yoo. 2017. “Experimental investigation of the piezoresistive properties of cement composites with hybrid carbon fibers and nanotubes.” Sensors 17 (11): 2516. https://doi.org/10.3390/s17112516.
Leong, C. K., Y. Aoyagi, and D. D. L. Chung. 2006. “Carbon black pastes as coatings for improving thermal gap-filling materials.” Carbon 44 (3): 435–440. https://doi.org/10.1016/j.carbon.2005.09.002.
Leong, C. K., and D. D. L. Chung. 2004. “Carbon black dispersions and carbon-silver combinations as thermal pastes that surpass commercial silver and ceramic pastes in providing high thermal contact conductance.” Carbon 42 (11): 2323–2327. https://doi.org/10.1016/j.carbon.2004.05.013.
Leung, C. K. Y., K. T. Wan, and L. Chen. 2008. “A novel optical fiber sensor for steel corrosion in concrete structures.” Sensors 8 (3): 1960–1976. https://doi.org/10.3390/s8031960.
Li, C., E. T. Thostenson, and T. W. Chou. 2008a. “Sensors and actuators based on carbon nanotubes and their composites: A review.” Compos. Sci. Technol. 68 (6): 1227–1249. https://doi.org/10.1016/j.compscitech.2008.01.006.
Li, H., H. Xiao, and J. Ou. 2006. “Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites.” Cem. Concr. Compos. 28 (9): 824–828. https://doi.org/10.1016/j.cemconcomp.2006.05.004.
Li, H., H. Xiao, and J. Ou. 2008b. “Electrical property of cement-based composites filled with carbon black under long-term wet and loading condition.” Compos. Sci. Technol. 68 (9): 2114–2119. https://doi.org/10.1016/j.compscitech.2008.03.007.
Lim, Y. Y., S. Bhalla, and C. K. Soh. 2006. “Structural identification and damage diagnosis using self-sensing piezo-impedance transducers.” Smart Mater. Struct. 15 (4): 987–995. https://doi.org/10.1088/0964-1726/15/4/012.
Lin, V. W. J., M. Li, J. P. Lynch, and V. C. Li. 2011. “Mechanical and electrical characterization of self-sensing carbon black ECC.” In Proc., Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security, 798316. Washington, DC: SPIE.
López-Higuera, J. M., L. R. Cobo, A. Q. Incera, and A. Cobo. 2011. “Fiber optic sensors in structural health monitoring.” J. Lightwave Technol. 29 (4): 587–608. https://doi.org/10.1109/JLT.2011.2106479.
Luo, J. L., Z. D. Duan, T. J. Zhao, and Q. Y. Li. 2010. “Hybrid effect of carbon fiber on piezoresistivity of carbon nanotube cement-based composite.” Adv. Mater. Res. 143–144: 639–643. https://doi.org/10.4028/www.scientific.net/AMR.143-144.639.
Materazzi, A. L., F. Ubertini, and A. D’Alessandro. 2013. “Carbon nanotube cement-based sensors for dynamic monitoring of concrete structures.” In Proc., FIB Symp., 22–24. Lausanne, Switzerland: Fédération Internationale du Béton International Federation for Structural Concrete.
Mo, Y. L., and R. H. Roberts. 2013. “Carbon nanofiber concrete for damage detection of infrastructure.” In Advances in nanofibers, 125–143. Rijeka, Croatia: INTECH.
Monteiro, A. O., P. B. Cachim, P. M. F. J. Costa, and M. Oeser. 2017. “Sensitive smart concrete loaded with carbon black nanoparticles for traffic monitoring sensitive smart concrete loaded with carbon black.” In Proc., 4th Int. Conf. on Smart Monitoring, Assessment and Rehabilitation of Civil Structures. Zurich, Switzerland: RWTH Publications.
Moraleda, A., C. García, J. Zaballa, and J. Arrue. 2013. “A temperature sensor based on a polymer optical fiber macro-bend.” Sensors 13 (10): 13076–13089. https://doi.org/10.3390/s131013076.
Naeem, F., H. K. Lee, H. K. Kim, and I. W. Nam. 2017. “Flexural stress and crack sensing capabilities of MWNT/cement composites.” Compos. Struct. 175 (Sep): 86–100. https://doi.org/10.1016/j.compstruct.2017.04.078.
Nairn, J. A. 2000. “Matrix microcracking in composites.” Polym. Matrix Compos. 2: 403–432. https://doi.org/10.1016/B0-08-042993-9/00069-3.
Nam, I. W., H. Souri, and H. K. Lee. 2016. “Percolation threshold and piezoresistive response of multi-wall carbon nanotube/cement composites.” Smart Struct. Syst. 18 (2): 217–231. https://doi.org/10.12989/sss.2016.18.2.217.
Ou, J., and B. Han. 2008. “Piezoresistive cement-based strain sensors and self-sensing concrete components.” J. Intell. Mater. Syst. Struct. 20 (3): 329–336. https://doi.org/10.1177/1045389X08094190.
Ou, J., and Z. Zhou. 2008. “Applications of optical fiber sensors of SHM in infrastructures.” In Proc., Smart Sensor Phenomena, Technology, Networks, and Systems, 693311. Washington, DC: SPIE.
Pang, J. W. C., and I. P. Bond. 2005. “A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility.” Compos. Sci. Technol. 65 (11–12): 1791–1799. https://doi.org/10.1016/j.compscitech.2005.03.008.
Rana, S., P. Subramani, R. Fangueiro, and A. G. Correia. 2016. “A review on smart self-sensing composite materials for civil engineering applications.” AIMS Mater. Sci. 3 (2): 357–379. https://doi.org/10.3934/matersci.2016.2.357.
Shi, L., Y. Lu, and Y. Bai. 2017. “Mechanical and electrical characterisation of steel fiber and carbon black engineered cementitious composites.” Procedia Eng. 188: 325–332. https://doi.org/10.1016/j.proeng.2017.04.491.
Shifeng, H., X. Dongyu, C. Jun, X. Ronghua, L. Lingchao, and C. Xin. 2007. “Smart properties of carbon fiber reinforced cement-based composites.” J. Compos. Mater. 41 (1): 125–131. https://doi.org/10.1177/0021998306063378.
Shindo, Y., Y. Kuronuma, T. Takeda, F. Narita, and S. Y. Fu. 2012. “Electrical resistance change and crack behavior in carbon nanotube/polymer composites under tensile loading.” Composites Part B 43 (1): 39–43. https://doi.org/10.1016/j.compositesb.2011.04.028.
Sun, M., W. J. Staszewski, and R. N. Swamy. 2010. “Smart sensing technologies for structural health monitoring of civil engineering structures.” Adv. Civ. Eng. 2010: 13. https://doi.org/10.1155/2010/724962.
Sun, M., W. J. Staszewski, R. N. Swamy, and Z. Li. 2008. “Application of low-profile piezoceramic transducers for health monitoring of concrete structures.” NDT E Int. 41 (8): 589–595. https://doi.org/10.1016/j.ndteint.2008.06.007.
Takeda, T., Y. Shindo, F. Naraoka, Y. Kuronuma, and F. Narita. 2013. “Crack and electrical resistance behaviors of carbon nanotube-based polymer composites under mixed-mode I/II loading.” Mater. Trans. 54 (7): 1105–1109. https://doi.org/10.2320/matertrans.M2013080.
Tapetado, A., P. J. Pinzón, J. Zubia, and C. Vázquez. 2015. “Polymer optical fiber temperature sensor with dual-wavelength compensation of power fluctuations.” J. Lightwave Technol. 33 (13): 2716–2723. https://doi.org/10.1109/JLT.2015.2408368.
Teomete, E., and O. I. Kocyigit. 2013. “Tensile strain sensitivity of steel fiber reinforced cement matrix composites tested by split tensile test.” Constr. Build. Mater. 47 (Oct): 962–968. https://doi.org/10.1016/j.conbuildmat.2013.05.095.
Thostenson, E. T., Z. Ren, and T.-W. Chou. 2001. “Advances in the science and technology of carbon nanotubes and their composites: A review.” Compos. Sci. Technol. 61 (13): 1899–1912. https://doi.org/10.1016/S0266-3538(01)00094-X.
Thostenson, E. T., S. Ziaee, and T. W. Chou. 2009. “Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites.” Compos. Sci. Technol. 69 (6): 801–804. https://doi.org/10.1016/j.compscitech.2008.06.023.
Tzou, H. S., H. J. Lee, and S. M. Arnold. 2004. “Smart materials, precision sensors/actuators, smart structures, and structronic systems.” Mech. Adv. Mater. Struct. 11 (4–5): 367–393. https://doi.org/10.1080/15376490490451552.
Wan, K. T., and C. K. Y. Leung. 2007. “Applications of a distributed fiber optic crack sensor for concrete structures.” Sens. Actuators, A 135 (2): 458–464. https://doi.org/10.1016/j.sna.2006.09.004.
Wang, L. 2015. “Differential structure for temperature sensing based on conductive polymer composites.” IEEE Trans. Electron Dev. 62 (9): 3025–3028. https://doi.org/10.1109/TED.2015.2438075.
Wang, S., and D. D. L. Chung. 1998a. “Carbon fiber polymer-matrix composite interfaces as thermocouple junctions.” Compos. Interfaces 6 (6): 519–529. https://doi.org/10.1163/156855499X00198.
Wang, S., and D. D. L. Chung. 1998b. “Interlaminar interface in carbon fiber polymer-matrix composites, studied by contact electrical resistivity measurement.” Compos. Interfaces 6 (6): 497–505. https://doi.org/10.1163/156855499X00170.
Wang, S., and D. D. L. Chung. 1999. “Temperature/light sensing using carbon fiber polymer-matrix composite.” Composites Part B 30 (6): 591–601. https://doi.org/10.1016/S1359-8368(99)00020-7.
Wang, S., and D. D. L. Chung. 2000. “Electrical behavior of carbon fiber polymer-matrix composites in the through-thickness direction.” J. Mater. Sci. 35 (1): 91–100. https://doi.org/10.1023/A:1004744600284.
Wang, W., H. Dai, and S. Wu. 2008. “Mechanical behavior and electrical property of CFRC-strengthened RC beams under fatigue and monotonic loading.” Mater. Sci. Eng. A 479 (1–2): 191–196. https://doi.org/10.1016/j.msea.2007.06.046.
Wang, W., S. Wu, and H. Dai. 2006. “Fatigue behavior and life prediction of carbon fiber reinforced concrete under cyclic flexural loading.” Mater. Sci. Eng. A 434 (1–2): 347–351. https://doi.org/10.1016/j.msea.2006.07.080.
Wang, X., S. Wang, and D. D. L. Chung. 1999. “Sensing damage in carbon fiber and its polymer-matrix and carbon-matrix composites by electrical resistance measurement.” J. Mater. Sci. 34 (11): 2703–2713. https://doi.org/10.1023/A:1004629505992.
Wen, S., and D. D. L. Chung. 1999. “Piezoresistivity in continuous carbon fiber cement-matrix composite.” Cem. Concr. Res. 29 (3): 445–449. https://doi.org/10.1016/S0008-8846(98)00211-7.
Wen, S., and D. D. L. Chung. 2003. “A comparative study of steel- and carbon-fibre cement as piezoresistive strain sensors.” Adv. Cem. Res. 15 (3): 119–128. https://doi.org/10.1680/adcr.2003.15.3.119.
Wen, S., and D. D. L. Chung. 2007. “Partial replacement of carbon fiber by carbon black in multifunctional cement-matrix composites.” Carbon 45 (3): 505–513. https://doi.org/10.1016/j.carbon.2006.10.024.
Wong, E. W., P. E. Sheehan, and C. M. Lieber. 1997. “Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes.” Science 277 (5334): 1971–1975. https://doi.org/10.1126/science.277.5334.1971.
Yang, Y., M. C. Gupta, J. N. Zalameda, and W. P. Winfree. 2008. “Dispersion behaviour, thermal and electrical conductivities of carbon nanotube-polystyrene nanocomposites.” Micro Nano Lett. 3 (2): 35–40. https://doi.org/10.1049/mnl:20070073.
Yazdanbakhsh, A., Z. Grasley, B. Tyson, and R. K. A. Al-Rub. 2010. “Distribution of carbon nanofibers and nanotubes in cementitious composites.” Transp. Res. Rec. 2142 (1): 89–95. https://doi.org/10.3141/2142-13.
Yazdani, N., and V. Mohanam. 2014. “Carbon nano-tube and nano-fiber in cement mortar: Effect of dosage rate and water-cement ratio.” Int. J. Mater. Sci. 4 (2): 45. https://doi.org/10.14355/ijmsci.2014.0402.01.
Ye, X. W., Y. H. Su, and J. P. Han. 2014. “Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review.” Sci. World J. 2014: 11. https://doi.org/10.1155/2014/652329.
Yu, M. F., B. S. Files, S. Arepalli, and R. S. Ruoff. 2000a. “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties.” Phys. Rev. Lett. 84 (24): 5552–5555. https://doi.org/10.1103/PhysRevLett.84.5552.
Yu, M.-F., O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Rouff. 2000b. “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load.” Science 287 (5453): 637–640. https://doi.org/10.1126/science.287.5453.637.
Zeng, X., X. Xu, P. M. Shenai, E. Kovalev, C. Baudot, N. Mathews, and Y. Zhao. 2011. “Characteristics of the electrical percolation in carbon nanotubes/polymer nanocomposites.” J. Phys. Chem. C 115 (44): 21685–21690. https://doi.org/10.1021/jp207388n.
Zhang, X., S. Song, and M. J. Yao. 2017. “Fabrication of embedded piezoelectric sensors and its application in traffic engineering.” In Proc., 2nd IEEE Int. Conf. on Intelligent Transportation Engineering, 259–265. New York: IEEE.
Zhao, R., G. Shao, Y. Cao, L. An, and C. Xu. 2014. “Temperature sensor made of polymer-derived ceramics for high-temperature applications.” Sens. Actuators, A 219 (Nov): 58–64. https://doi.org/10.1016/j.sna.2014.08.012.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 11November 2019

History

Published online: Aug 22, 2019
Published in print: Nov 1, 2019
Discussion open until: Jan 22, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Building Materials, Dept. of Civil, Environmental, and Natural Resources Engineering, Luleå Univ. of Technology, Luleå 97187, Sweden (corresponding author). ORCID: https://orcid.org/0000-0003-0459-7433. Email: [email protected]
Karin Habermehl-Cwirzen [email protected]
Senior Lecturer, Building Materials, Dept. of Civil, Environmental, and Natural Resources Engineering, Luleå Univ. of Technology, Luleå 97187, Sweden. Email: [email protected]
Professor, Building Materials, Dept. of Civil, Environmental, and Natural Resources Engineering, Luleå Univ. of Technology, Luleå 97187, Sweden. ORCID: https://orcid.org/0000-0001-6287-2240. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share