State-of-the-Art Reviews
Aug 21, 2019

Literature Review of Advances in Materials Used in Development of Alkali-Activated Mortars, Concretes, and Composites

Publication: Journal of Materials in Civil Engineering
Volume 31, Issue 11

Abstract

Materials providing an improvement and conformance to increasing technical and ecological requirements plays a crucial role in the sustainable development of resource- and energy-intensive cements and concretes. Over the past decades, an extensive resource base of natural and technogenic materials has been established for alkali-activated materials (AAMs) and is being continuously expanded with the rapid development of the alkali-activation theory and technology and the ongoing studies of many research groups around the world. This paper reviews the recent progress in fiber reinforcing; potential assessment of various aluminosilicates for alkali activation (AA) and modification of alkali-activated cements (AACs); replacement of natural aggregates with wastes and by-products; replacement of expensive alkali activators with more appropriate alternatives; and modification of AACs by chemical admixtures, metals, and nanomaterials. This literature review was carried out from the perspectives of the suitability of materials and their effects on the efficiency improvement of engineering, economic, and ecological performances AAMs.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abdollahnejad, Z., T. Luukkonen, M. Mastali, P. Kinnunen, and M. Illikainen. 2019. “Development of one-part alkali-activated ceramic/slag binders containing recycled ceramic aggregates.” J. Mater. Civ. Eng. 31 (2): 04018386. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002608.
Alcamand, H. A., P. H. R. Borges, F. A. Silva, and A. C. C. Trindade. 2018. “The effect of matrix composition and calcium content on the sulfate durability of metakaolin and metakaolin/slag alkali-activated mortars.” Ceram. Int. 44 (5): 5037–5044. https://doi.org/10.1016/j.ceramint.2017.12.102.
Aliabdo, A. A., A. E. M. A. Elmoaty, and H. A. Salem. 2016. “Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance.” Constr. Build. Mater. 123 (Oct): 581–593. https://doi.org/10.1016/j.conbuildmat.2016.07.043.
Al-Majidi, M. H., A. Lampropoulos, and A. B. Cundy. 2017. “Tensile properties of a novel fibre reinforced geopolymer composite with enhanced strain hardening characteristics.” Compos. Struct. 168 (May): 402–427. https://doi.org/10.1016/j.compstruct.2017.01.085.
Almeida, F., V. M. C. F. Cunha, T. Miranda, and N. Cristelo. 2018. “Indirect tensile behaviour of fibre reinforced alkali-activated composites.” Fibers 6 (2): 30. https://doi.org/10.3390/fib6020030.
Alomayri, T. 2017. “Effect of glass microfibre addition on the mechanical performances of fly ash-based geopolymer composites.” J. Asian Ceram. Soc. 5 (3): 334–340. https://doi.org/10.1016/j.jascer.2017.06.007.
Alonso, M. M., A. Rodríguez, and F. Puertas. 2018. “Viability of the use of construction and demolition waste aggregates in alkali-activated mortars.” Mater. Constr. 68 (331): 164. https://doi.org/10.3989/mc.2018.07417.
Assi, L., K. Carter, E. Deaver, R. Anay, and P. Ziehl. 2018. “Sustainable concrete: Building a greener future.” J. Cleaner Prod. 198 (Oct): 1641–1651. https://doi.org/10.1016/j.jclepro.2018.07.123.
Bayat, A., A. Hassani, and A. A. Yousefi. 2018. “Effects of red mud on the properties of fresh and hardened alkali-activated slag paste and mortar.” Constr. Build. Mater. 167 (Apr): 775–790. https://doi.org/10.1016/j.conbuildmat.2018.02.105.
Behfarnia, K., and M. Rostami. 2017a. “Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete.” Constr. Build. Mater. 131 (Jan): 205–213. https://doi.org/10.1016/j.conbuildmat.2016.11.070.
Behfarnia, K., and M. Rostami. 2017b. “Mechanical properties and durability of fiber reinforced alkali activated slag concrete.” J. Mater. Civ. Eng. 29 (12): 04017231. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002073.
Bergamonti, L., R. Taurino, L. Cattani, D. Ferretti, and F. Bondioli. 2018. “Lightweight hybrid organic-inorganic geopolymers obtained using polyurethane waste.” Constr. Build. Mater. 185 (10): 285–292. https://doi.org/10.1016/j.conbuildmat.2018.07.006.
Bhutta, A., M. Farooq, and N. Banthia. 2018a. “Matrix hybridization using waste fuel ash and slag in alkali-activated composites and its influence on maturity of fiber-matrix bond.” J. Cleaner Prod. 177 (Mar): 857–867. https://doi.org/10.1016/j.jclepro.2018.01.001.
Bhutta, A., M. Farooq, P. H. R. Borges, and N. Banthia. 2018b. “Influence of fiber inclination angle on bond-slip behavior of different alkali-activated composites under dynamic and quasi-static loadings.” Cem. Concr. Res. 107 (May): 236–246. https://doi.org/10.1016/j.cemconres.2018.02.026.
Bílek, V., Jr., L. Kalina, and R. Novotny. 2018. “Polyethylene glycol molecular weight as an important parameter affecting drying shrinkage and hydration of alkali-activated slag mortars and pastes.” Constr. Build. Mater. 166 (Mar): 564–571. https://doi.org/10.1016/j.conbuildmat.2018.01.176.
Capasso, I., S. Lirer, A. Flora, C. Ferone, R. Cioffi, D. Caputo, and B. Liguori. 2019. “Reuse of mining waste as aggregates in fly ash-based geopolymers.” J. Cleaner Prod. 220 (5): 65–73. https://doi.org/10.1016/j.jclepro.2019.02.164.
Chang, J. J., W. Yeih, T. J. Chung, and R. Huang. 2016. “Properties of pervious concrete made with electric arc furnace slag and alkali-activated slag cement.” Constr. Build. Mater. 109 (Apr): 34–40. https://doi.org/10.1016/j.conbuildmat.2016.01.049.
Chi, M., H. Chen, T. Weng, R. Huang, and Y. Wang. 2017. “Durability of alkali-activated fly ash/slag concrete.” Mater. Sci. Forum 904: 157–161. https://doi.org/10.4028/www.scientific.net/MSF.904.157.
Croymans, T., W. Schroeyers, P. Krivenko, O. Kovalchuk, A. Pasko, M. Hult, G. Marissens, G. Lutter, and S. Schreurs. 2017. “Radiological characterization and evaluation of high volume bauxite residue alkali activated concretes.” J. Environ. Radioact. 168 (Mar): 21–29. https://doi.org/10.1016/j.jenvrad.2016.08.013.
D’Elia, A., D. Pinto, G. Eramo, L. C. Giannossa, G. Ventruti, and R. Laviano. 2018. “Effects of processing on the mineralogy and solubility of carbonate-rich clays for alkaline activation purpose: Mechanical, thermal activation in red/ox atmosphere and their combination.” Appl. Clay Sci. 152 (Feb): 9–21. https://doi.org/10.1016/j.clay.2017.11.036.
Dietel, J., L. N. Warr, M. Bertmer, A. Steudel, G. H. Grathoff, and K. Emmerich. 2017. “The importance of specific surface area in the geopolymerization of heated illitic clay.” Appl. Clay Sci. 139 (Apr): 99–107. https://doi.org/10.1016/j.clay.2017.01.001.
Du, J., Y. Bu, X. Cao, Z. Shen, and B. Sun. 2018. “Utilization of alkali-activated slag based composite in deepwater oil well cementing.” Constr. Build. Mater. 186 (Oct): 114–122. https://doi.org/10.1016/j.conbuildmat.2018.07.068.
Duxson, P., J. L. Provis, G. C. Lukey, and J. S. J. van Deventer. 2007. “The role of inorganic polymer technology in the development of ‘green concrete’.” Cem. Concr. Res. 37 (12): 1590–1597. https://doi.org/10.1016/j.cemconres.2007.08.018.
El Hafid, K., and M. Hajjaji. 2018. “Geopolymerization of glass- and silicate-containing heated clay.” Constr. Build. Mater. 159 (Jan): 598–609. https://doi.org/10.1016/j.conbuildmat.2017.11.018.
Elibol, C., and O. Sengul. 2016. “Effects of activator properties and ferrochrome slag aggregates on the properties of alkali-activated blast furnace slag mortars.” Arabian J. Sci. Eng. 41 (4): 1561–1571. https://doi.org/10.1007/s13369-015-1910-8.
El-Wafa, M. A., and K. Fukuzawa. 2018. “Early-age strength of alkali-activated municipal slag-fly ash-based geopolymer mortar.” J. Mater. Civ. Eng. 30 (4): 04018040. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002234.
Espuelas, S., A. M. Echeverria, S. Marcelino, E. Prieto, and A. Seco. 2018. “Technical and environmental characterization of hydraulic and alkaline binders.” J. Cleaner Prod. 196 (Sep): 1306–1313. https://doi.org/10.1016/j.jclepro.2018.06.090.
Fang, G., W. K. Ho, W. Tu, and M. Zhang. 2018. “Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature.” Constr. Build. Mater. 172 (May): 476–487. https://doi.org/10.1016/j.conbuildmat.2018.04.008.
Farhan, N. A., M. N. Sheikh, and M. N. S. Hadi. 2018. “Engineering properties of ambient cured alkali-activated fly ash-slag concrete reinforced with different types of steel fiber.” J. Mater. Civ. Eng. 30 (7): 04018142. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002333.
Faris, M. A., M. M. A. B. Abdullah, K. N. Ismail, R. Muniandy, and R. P. Jaya. 2016. “Performance of straight steel fibres reinforced alkali activated concrete.” Mater. Sci. Eng. 133: 012045. https://doi.org/10.1088/1757-899X/133/1/012045.
Gevaudan, J. P., A. Caicedo-Ramirez, M. T. Hernandez, and W. V. Srubar, III. 2019. “Copper and cobalt improve the acid resistance of alkali-activated cements.” Cem. Concr. Res. 115 (1): 327–338. https://doi.org/10.1016/j.cemconres.2018.08.002.
Gharzouni, A., L. Ouamara, I. Sobrados, and S. Rossignol. 2018. “Alkali-activated materials from different aluminosilicate sources: Effect of aluminum and calcium availability.” J. Non-Cryst. Solids 484 (Mar): 14–25. https://doi.org/10.1016/j.jnoncrysol.2018.01.014.
Goncalves, J. R. A., and Y. B. V. Bindiganavile. 2018. “Thermal properties of fibre reinforced alkali-activated concrete in extreme temperatures.” Mag. Concr. Res. 70 (18): 954–964. https://doi.org/10.1680/jmacr.17.00189.
Goncalves, J. R. A., Y. Boluk, and V. Bindiganavile. 2018. “Crack growth resistance in fibre reinforced alkali-activated fly ash concrete exposed to extreme temperatures.” Mater. Struct. 51 (2): 42. https://doi.org/10.1617/s11527-018-1163-6.
Hajimohammadi, A., T. Ngo, and A. Kashani. 2018. “Sustainable one-part geopolymer foams with glass fines versus sand as aggregates.” Constr. Build. Mater. 171 (May): 223–231. https://doi.org/10.1016/j.conbuildmat.2018.03.120.
Hu, W., Q. Nie, B. Huang, and X. Shu. 2019. “Investigation of the strength development of cast-in-place geopolymer piles with heating systems.” J. Cleaner Prod. 215 (4): 1481–1489. https://doi.org/10.1016/j.jclepro.2019.01.155.
Huseien, G. F., M. Ismail, M. I. M. Tahir, J. Mirza, N. H. A. Khalid, M. A. Asaad, and N. N. Sarbini. 2018a. “Synergism between palm oil fuel ash and slag: Production of environmental-friendly alkali activated mortars with enhanced properties.” Constr. Build. Mater. 170 (May): 235–244. https://doi.org/10.1016/j.conbuildmat.2018.03.031.
Huseien, G. F., J. Mirza, S. K. Ghoshal, and A. A. Hussein. 2017. “Geopolymer mortars as sustainable repair material: A comprehensive review.” Renewable Sustainable Energy Rev. 80 (Dec): 54–74. https://doi.org/10.1016/j.rser.2017.05.076.
Huseien, G. F., A. R. M. Sam, J. Mirza, M. M. Tahir, M. A. Asaad, M. Ismail, and K. W. Shah. 2018b. “Waste ceramic powder incorporated alkali activated mortars exposed to elevated temperatures: Performance evaluation.” Constr. Build. Mater. 187 (Oct): 307–317. https://doi.org/10.1016/j.conbuildmat.2018.07.226.
Huseien, G. F., M. M. Tahir, J. Mirza, M. Ismail, K. W. Shah, and M. A. Asaad. 2018c. “Effects of POFA replaced with FA on durability properties of GBFS included alkali activated mortars.” Constr. Build. Mater. 175 (Jun): 174–186. https://doi.org/10.1016/j.conbuildmat.2018.04.166.
Ibrahim, M., M. A. M. Johari, M. Maslehuddin, and R. M. Kalimur. 2018. “Influence of nano-SiO2 on the strength and microstructure of natural pozzolan based alkali activated concrete.” Constr. Build. Mater. 173 (Jun): 573–585. https://doi.org/10.1016/j.conbuildmat.2018.04.051.
Jiao, Z., Y. Wang, W. Zheng, and W. Huang. 2018. “Pottery sand as fine aggregate for preparing alkali-activated slag mortar.” In Advances in materials science and engineering. Zurich, Switzerland: Trans Tech Publications.
Karozou, A., S. Konopisi, E. Paulidou, and M. Stefanidou. 2019. “Alkali activated clay mortars with different activators.” Constr. Build. Mater. 212 (Jul): 85–91. https://doi.org/10.1016/j.conbuildmat.2019.03.244.
Krivenko, P., O. Kovalchuk, A. Pasko, T. Croymans, M. Hult, G. Lutter, N. Vandevenne, S. Schreurs, and W. Schroeyers. 2017. “Development of alkali activated cements and concrete mixture design with high volumes of red mud.” Constr. Build. Mater. 151 (Oct): 819–826. https://doi.org/10.1016/j.conbuildmat.2017.06.031.
Lemougna, P. N., K. T. Wang, Q. Tang, and X. M. Cui. 2017. “Study on the development of inorganic polymers from red mud and slag system: Application in mortar and lightweight materials.” Constr. Build. Mater. 156 (Dec): 486–495. https://doi.org/10.1016/j.conbuildmat.2017.09.015.
Li, Q., K. Yang, and C. Yang. 2019. “An alternative admixture to reduce sorptivity of alkali-activated slag cement by optimising pore structure and introducing hydrophobic film.” Cem. Concr. Compos. 95 (1): 183–192. https://doi.org/10.1016/j.cemconcomp.2018.11.004.
Ling, Y., K. Wang, and C. Fu. 2019. “Shrinkage behavior of fly ash based geopolymer pastes with and without shrinkage reducing admixture.” Cem. Concr. Compos. 98 (4): 74–82. https://doi.org/10.1016/j.cemconcomp.2019.02.007.
Long, W. J., H. D. Li, J. J. Wei, F. Xing, and N. Han. 2018. “Sustainable use of recycled crumb rubbers in eco-friendly alkali activated slag mortar: Dynamic mechanical properties.” J. Cleaner Prod. 204 (Dec): 1004–1015. https://doi.org/10.1016/j.jclepro.2018.08.306.
Lu, T. H., Y. L. Chen, P. H. Shih, and J. E. Chang. 2018. “Use of basic oxygen furnace slag fines in the production of cementitious mortars and the effects on mortar expansion.” Constr. Build. Mater. 167 (Apr): 768–774. https://doi.org/10.1016/j.conbuildmat.2018.02.102.
Luhar, S., S. Chaudhary, and I. Luha. 2019. “Development of rubberized geopolymer concrete: Strength and durability studies.” Constr. Build. Mater. 204 (4): 740–753. https://doi.org/10.1016/j.conbuildmat.2019.01.185.
Luhar, S., S. Chaudhary, and I. Luhar. 2018. “Thermal resistance of fly ash based rubberized geopolymer concrete.” J. Build. Eng. 19 (9): 420–428. https://doi.org/10.1016/j.jobe.2018.05.025.
Luukkonen, T., Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, and M. Illikainen. 2018. “Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar.” J. Cleaner Prod. 187 (6): 171–179. https://doi.org/10.1016/j.jclepro.2018.03.202.
Ma, C., B. Zhao, S. Guo, G. Long, and Y. Xie. 2019a. “Properties and characterization of green one-part geopolymer activated by composite activators.” J. Cleaner Prod. 220 (5): 188–199. https://doi.org/10.1016/j.jclepro.2019.02.159.
Ma, C. K., A. Z. Awang, and W. Omar. 2018. “Structural and material performance of geopolymer concrete: A review.” Constr. Build. Mater. 186 (Oct): 90–102. https://doi.org/10.1016/j.conbuildmat.2018.07.111.
Ma, G., Z. Li, L. Wang, and G. Bai. 2019b. “Micro-cable reinforced geopolymer composite for extrusion-based 3D printing.” Mater. Lett. 235 (1): 144–147. https://doi.org/10.1016/j.matlet.2018.09.159.
Marinković, S., J. Dragaš, I. Ignjatović, and N. Tošić. 2017. “Environmental assessment of green concretes for structural use.” J. Cleaner Prod. 154 (6): 633–649. https://doi.org/10.1016/j.jclepro.2017.04.015.
Matalkah, F., P. Soroushian, A. Balchandra, and A. Peyvandi. 2017. “Characterization of alkali-activated nonwood biomass ash-based geopolymer concrete.” J. Mater. Civ. Eng. 29 (4): 04016270. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001801.
Menon, S. U., K. B. Anand, and A. K. Sharma. 2018. “Performance evaluation of alkali activated coal ash aggregate in concrete.” Proc. Inst. Civ. Eng. Waste Resour. Manage. 171 (1): 4–12. https://doi.org/10.1680/jwarm.17.00033.
Mithun, B. M., and M. C. Narasimhan. 2016. “Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate.” J. Cleaner Prod. 112 (1): 837–844. https://doi.org/10.1016/j.jclepro.2015.06.026.
Mohammadinia, A., A. Arulrajah, J. Sanjayan, M. M. Disfani, M. W. Bo, and S. Darmawan. 2016. “Strength development and microfabric structure of construction and demolition aggregates stabilized with fly ash-based geopolymers.” J. Mater. Civ. Eng. 28 (11): 04016141. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001652.
Najimi, M., N. Ghafoori, B. Radke, K. Sierra, and M. R. Sharbaf. 2018a. “Comparative study of alkali-activated natural pozzolan and fly ash mortars.” J. Mater. Civ. Eng. 30 (6): 04018115. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002306.
Najimi, M., N. Ghafoori, and M. Sharbaf. 2018b. “Alkali-activated natural pozzolan/slag mortars: A parametric study.” Constr. Build. Mater. 164 (Mar): 625–643. https://doi.org/10.1016/j.conbuildmat.2017.12.222.
Navarro, R., E. G. Alcocel, I. Sánchez, P. Garcés, and E. Zornoza. 2018. “Mechanical properties of alkali activated ground SiMn slag mortars with different types of aggregates.” Constr. Build. Mater. 186 (Oct): 79–89. https://doi.org/10.1016/j.conbuildmat.2018.07.093.
Nguyen, H., V. Carvelli, E. Adesanya, P. Kinnunen, and M. Illikainen. 2018a. “High performance cementitious composite from alkali-activated ladle slag reinforced with polypropylene fibers.” Cem. Concr. Compos. 90 (7): 150–160. https://doi.org/10.1016/j.cemconcomp.2018.03.024.
Nguyen, L., A. J. Moseson, Y. Farnam, and S. Spatari. 2018c. “Effects of composition and transportation logistics on environmental, energy and cost metrics for the production of alternative cementitious binders.” J. Cleaner Prod. 185 (Jun): 628–645. https://doi.org/10.1016/j.jclepro.2018.02.247.
Nguyễn, H. H., J. I. Choi, K. I. Song, J. K. Song, J. Huh, and B. Y. Lee. 2018b. “Self-healing properties of cement-based and alkali-activated slag-based fiber-reinforced composites.” Constr. Build. Mater. 165 (Mar): 801–811. https://doi.org/10.1016/j.conbuildmat.2018.01.023.
Nie, Q., W. Hu, B. Huang, X. Shu, and Q. He. 2019. “Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation.” J. Hazard. Mater. 369 (5): 503–511. https://doi.org/10.1016/j.jhazmat.2019.02.059.
Noushini, A., M. Hastings, A. Castel, and F. Aslani. 2018. “Mechanical and flexural performance of synthetic fibre reinforced geopolymer concrete.” Constr. Build. Mater. 186 (10): 454–475. https://doi.org/10.1016/j.conbuildmat.2018.07.110.
Oderji, S. Y., B. Chen, M. R. Ahmad, and S. F. A. Shah. 2019. “Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators.” J. Cleaner Prod. 225 (Jul): 1–10. https://doi.org/10.1016/j.jclepro.2019.03.290.
Onuaguluchi, O., P. H. R. Borges, A. Bhutta, and N. Banthia. 2017. “Performance of scrap tire steel fibers in OPC and alkali-activated mortars.” Mater. Struct. 50 (2): 157. https://doi.org/10.1617/s11527-017-1026-6.
Pacheco-Torgal, F., J. Labrincha, C. Leonelli, A. Palomo, and P. Chindaprasit. 2014. Handbook of alkali-activated cements, mortars and concretes. Cambridge, MA: Elsevier.
Palankar, N., A. U. R. Shankar, and B. M. Mithun. 2016. “Durability studies on eco-friendly concrete mixes incorporating steel slag as coarse aggregates.” J. Cleaner Prod. 129 (Aug): 437–448. https://doi.org/10.1016/j.jclepro.2016.04.033.
Palankar, N., A. U. R. Shankar, and B. M. Mithun. 2017. “Investigations on alkali-activated slag/fly ash concrete with steel slag coarse aggregate for pavement structures.” Int. J. Pavement Eng. 18 (6): 500–512. https://doi.org/10.1080/10298436.2015.1095902.
Palomo, A., P. Krivenko, I. Garcia-Lodeiro, E. Kavalerova, O. Maltseva, and A. Fernández-Jiménez. 2014. “A review on alkaline activation: New analytical perspectives.” Mater. Constr. 64 (315): e022. https://doi.org/10.3989/mc.2014.00314.
Panda, B., S. C. Paul, L. J. Hui, Y. W. D. Tay, and M. J. Tan. 2017. “Additive manufacturing of geopolymer for sustainable built environment.” J. Cleaner Prod. 167 (11): 281–288. https://doi.org/10.1016/j.jclepro.2017.08.165.
Panda, B., G. V. P. B. Singh, C. Unluer, and M. J. Tan. 2019. “Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing.” J. Cleaner Prod. 220 (5): 610–619. https://doi.org/10.1016/j.jclepro.2019.02.185.
Panda, B., C. Unluer, and M. J. Tan. 2018. “Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing.” Cem. Concr. Compos. 94 (Nov): 307–314. https://doi.org/10.1016/j.cemconcomp.2018.10.002.
Panizza, M., M. Natali, E. Garbin, S. Tamburini, and M. Secco. 2018. “Assessment of geopolymers with construction and demolition waste (CDW) aggregates as a building material.” Constr. Build. Mater. 181 (Aug): 119–133. https://doi.org/10.1016/j.conbuildmat.2018.06.018.
Parthiban, K., and K. S. R. Mohan. 2017. “Influence of recycled concrete aggregates on the engineering and durability properties of alkali activated slag concrete.” Constr. Build. Mater. 133 (Feb): 65–72. https://doi.org/10.1016/j.conbuildmat.2016.12.050.
Passuello, A., E. D. Rodríguez, E. Hirt, M. Longhi, S. A. Bernal, J. L. Provis, and A. P. Kirchheim. 2017. “Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators.” J. Cleaner Prod. 166 (11): 680–689. https://doi.org/10.1016/j.jclepro.2017.08.007.
Peng, H., C. Cui, Z. Liu, C. S. Cai, and Y. Liu. 2019. “Synthesis and reaction mechanism of an alkali-activated metakaolin-slag composite system at room temperature.” J. Mater. Civ. Eng. 31 (1): 04018345. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002558.
Provis, J. L. 2018. “Alkali-activated materials.” Cem. Concr. Res. 114 (12): 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009.
Provis, J. L., and J. S. J. van Deventer. 2014. Alkali activated materials: State-of-the-art report. Dordrecht, Netherlands: Springer.
Punurai, W., W. Kroehong, A. Saptamongkol, and P. Chindaprasirt. 2018. “Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste.” Constr. Build. Mater. 186 (10): 62–70. https://doi.org/10.1016/j.conbuildmat.2018.07.115.
Rafeet, A., R. Vinai, M. Soutsos, and W. Sha. 2017. “Guidelines for mix proportioning of fly ash/GGBS based alkali activated concretes.” Constr. Build. Mater. 147 (Aug): 130–142. https://doi.org/10.1016/j.conbuildmat.2017.04.036.
Rahman, R. O. A., R. Z. Rakhimov, N. R. Rakhimova, and M. I. Ojovan. 2015. Cementitious materials for nuclear waste immobilization. Chichester, UK: Wiley.
Rakhimova, N. R., and R. Z. Rakhimov. 2019a. “Reaction products, structure and properties of alkali-activated metakaolin cements incorporated with supplementary materials—A review.” J. Mater. Res. Technol. 8 (1): 1522–1531. https://doi.org/10.1016/j.jmrt.2018.07.006.
Rakhimova, N. R., and R. Z. Rakhimov. 2019b. “Toward clean cement technologies: A review on alkali-activated fly-ash cements incorporated with supplementary materials.” J. Non-Cryst. Solids 509 (Apr): 31–41. https://doi.org/10.1016/j.jnoncrysol.2019.01.025.
Rakhimova, N. R., R. Z. Rakhimov, V. P. Morozov, A. R. Gaifullin, L. I. Potapova, A. M. Gubaidullina, and Y. N. Osin. 2018. “Marl-based geopolymers incorporated with limestone: A feasibility study.” J. Non-Cryst. Solids 492 (Jul): 1–10. https://doi.org/10.1016/j.jnoncrysol.2018.04.015.
Ramos, G. A., F. Pelisser, P. J. P. Gleize, A. M. Bernardin, and M. D. Michel. 2018. “Effect of porcelain tile polishing residue on geopolymer cement.” J. Cleaner Prod. 191 (8): 297–303. https://doi.org/10.1016/j.jclepro.2018.04.236.
Rashad, A. M., D. M. Sadek, and H. A. Hassan. 2016. “An investigation on blast-furnace stag as fine aggregate in alkali-activated slag mortars subjected to elevated temperatures.” J. Cleaner Prod. 112 (Part 1): 1086–1096. https://doi.org/10.1016/j.jclepro.2015.07.127.
Reig, L., M. A. Sanz, M. V. Borrachero, J. Monzó, L. Soriano, and J. Payá. 2017. “Compressive strength and microstructure of alkali-activated mortars with high ceramic waste content.” Ceram. Int. 43 (16): 13622–13634. https://doi.org/10.1016/j.ceramint.2017.07.072.
Rickard, W. D. A., G. J. G. Gluth, and K. Pistol. 2016. “In-situ thermo-mechanical testing of fly ash geopolymer concretes made with quartz and expanded clay aggregates.” Cem. Concr. Res. 80 (Feb): 33–43. https://doi.org/10.1016/j.cemconres.2015.11.006.
Robayo-Salazar, R., J. Mejía-Arcila, R. M. de Gutiérrez, and E. Martínez. 2018. “Life cycle assessment (LCA) of an alkali-activated binary concrete based on natural volcanic pozzolan: A comparative analysis to OPC concrete.” Constr. Build. Mater. 176 (Jul): 103–111. https://doi.org/10.1016/j.conbuildmat.2018.05.017.
Rodrigue, A., J. Duchesne, B. Fournier, and B. Bissonnette. 2018. “Influence of added water and fly ash content on the characteristics, properties and early-age cracking sensitivity of alkali-activated slag/fly ash concrete cured at ambient temperature.” Constr. Build. Mater. 171 (May): 929–941. https://doi.org/10.1016/j.conbuildmat.2018.03.176.
Rostami, M., and K. Behfarnia. 2017. “The effect of silica fume on durability of alkali activated slag concrete.” Constr. Build. Mater. 134 (Mar): 262–268. https://doi.org/10.1016/j.conbuildmat.2016.12.072.
Rovnaník, P., H. Šimonová, L. Topolár, P. Bayer, P. Schmid, and Z. Keršner. 2016. “Carbon nanotube reinforced alkali-activated slag mortars.” Constr. Build. Mater. 119 (Aug): 223–229. https://doi.org/10.1016/j.conbuildmat.2016.05.051.
Saeli, M., D. M. Tobaldi, M. P. Seabra, and J. A. Labrincha. 2019. “Mix design and mechanical performance of geopolymeric binders and mortars using biomass fly ash and alkaline effluent from paper-pulp industry.” J. Cleaner Prod. 208 (1): 1188–1197. https://doi.org/10.1016/j.jclepro.2018.10.213.
Samson, G., M. Cyr, and X. X. Gao. 2017. “Thermomechanical performance of blended metakaolin-GGBS alkali-activated foam concrete.” Constr. Build. Mater. 157 (Dec): 982–993. https://doi.org/10.1016/j.conbuildmat.2017.09.146.
Sarmin, S. N., and J. Welling. 2016. “Lightweight geopolymer wood composite synthesized from alkali-activated fly ash and metakaolin.” Jurnal Teknologi 78 (11): 49–55. https://doi.org/10.11113/.v78.8734.
Shahrajabian, F., and K. Behfarnia. 2018. “The effects of nano particles on freeze and thaw resistance of alkali-activated slag concrete.” Constr. Build. Mater. 176 (Jul): 172–178. https://doi.org/10.1016/j.conbuildmat.2018.05.033.
Song, C., Y. C. Choi, and S. Choi. 2016. “Effect of internal curing by superabsorbent polymers—Internal relative humidity and autogenous shrinkage of alkali-activated slag mortars.” Constr. Build. Mater. 123 (Oct): 198–206. https://doi.org/10.1016/j.conbuildmat.2016.07.007.
Sturm, P., G. J. G. Gluth, C. Jäger, H. J. H. Brouwers, and H.-C. Kühne. 2018. “Sulfuric acid resistance of one-part alkali-activated mortars.” Cem. Concr. Res. 109 (Jul): 54–63. https://doi.org/10.1016/j.cemconres.2018.04.009.
Sung, C. H., R. Huang, C. J. Tsai, Y. H. Wu, W. T. Lin, and T. L. Weng. 2017. “Application on cementitious materials to promote durability of alkali-activated concrete containing co-fired fly ash and water-quenched slag.” Monatsh. Chem. 148 (7): 1349–1354. https://doi.org/10.1007/s00706-017-1951-7.
Tang, Z., W. Li, Y. Hu, J. L. Zhou, and V. W. Y. Tam. 2019. “Review on designs and properties of multifunctional alkali-activated materials (AAMs).” Constr. Build. Mater. 200 (Mar): 474–489. https://doi.org/10.1016/j.conbuildmat.2018.12.157.
Thapa, V. B., D. Waldmann, J. F. Wagner, and A. Lecomte. 2018. “Assessment of the suitability of gravel wash mud as raw material for the synthesis of an alkali-activated binder.” Appl. Clay Sci. 161 (Sep): 110–118. https://doi.org/10.1016/j.clay.2018.04.025.
Their, J. M., and M. Özakça. 2018. “Developing geopolymer concrete by using cold-bonded fly ash aggregate, nano-silica, and steel fiber.” Constr. Build. Mater. 180 (Aug): 12–22. https://doi.org/10.1016/j.conbuildmat.2018.05.274.
Toniolo, N., A. Rincón, Y. S. Avadhut, M. Hartmann, E. Bernardo, and A. R. Boccaccin. 2018. “Novel geopolymers incorporating red mud and waste glass cullet.” Mater. Lett. 219 (5): 152–154. https://doi.org/10.1016/j.matlet.2018.02.061.
Tu, W., Y. Zhu, G. Fang, X. Wang, and M. Zhang. 2019. “Internal curing of alkali-activated fly ash-slag pastes using superabsorbent polymer.” Cem. Concr. Res. 116 (Feb): 179–190. https://doi.org/10.1016/j.cemconres.2018.11.018.
Türkmen, İ., M. B. Karakoç, F. Kantarcı, M. M. Maras, and R. Demirboǧa. 2016. “Fire resistance of geopolymer concrete produced from Elazıǧ ferrochrome slag.” Fire Mater. 40 (6): 836–847. https://doi.org/10.1002/fam.2348.
Valencia-Saavedra, W., R. M. de Gutiérrez, and M. Gordillo. 2018. “Geopolymeric concretes based on fly ash with high unburned content.” Constr. Build. Mater. 165 (Mar): 697–706. https://doi.org/10.1016/j.conbuildmat.2018.01.071.
Valentini, L., S. Contessi, M. C. Dalconi, F. Zorzi, and E. Garbin. 2018. “Alkali-activated calcined smectite clay blended with waste calcium carbonate as a low-carbon binder.” J. Cleaner Prod. 184 (May): 41–49. https://doi.org/10.1016/j.jclepro.2018.02.249.
Venu Madhav, T., I. V. Ramana Reddy, V. G. Ghorpade, and S. Jyothirmai. 2018. “Compressive strength study of geopolymer mortar using quarry rock dust.” Mater. Lett. 231 (11): 105–108. https://doi.org/10.1016/j.matlet.2018.07.133.
Xuan, D., P. Tang, and C. S. Poon. 2019. “MSWIBA-based cellular alkali-activated concrete incorporating waste glass powder.” Cem. Concr. Compos. 95 (Jan): 128–136. https://doi.org/10.1016/j.cemconcomp.2018.10.018.
Yang, K., C. Yang, J. Zhang, Q. Pan, L. Yu, and Y. Bai. 2018. “First structural use of site-cast, alkali-activated slag concrete in China.” Proc. Inst. Civ. Eng. 171 (10): 800–809. https://doi.org/10.1680/jstbu.16.00193.
Yazdi, M. A., M. Liebscher, S. Hempel, J. Yang, and V. Mechtcherine. 2018. “Correlation of microstructural and mechanical properties of geopolymers produced from fly ash and slag at room temperature.” Constr. Build. Mater. 191 (2): 330–341. https://doi.org/10.1016/j.conbuildmat.2018.10.037.
Zhang, L., and Y. Yue. 2018. “Influence of waste glass powder usage on the properties of alkali-activated slag mortars based on response surface methodology.” Constr. Build. Mater. 181 (Aug): 527–534. https://doi.org/10.1016/j.conbuildmat.2018.06.040.
Zhang, W., X. Yao, T. Yang, and Z. Zhang. 2018. “The degradation mechanisms of alkali-activated fly ash/slag blend cements exposed to sulphuric acid.” Constr. Build. Mater. 186 (Oct): 1177–1187. https://doi.org/10.1016/j.conbuildmat.2018.08.050.
Zhu, X., D. Tang, K. Yang, Z. Zhang, Q. Li, Q. Pan, and C. Yang. 2018. “Effect of Ca(OH)2 on shrinkage characteristics and microstructures of alkali-activated slag concrete.” Constr. Build. Mater. 175 (Jun): 467–482. https://doi.org/10.1016/j.conbuildmat.2018.04.180.
Zuo, Y., M. Nedeljković, and G. Ye. 2019. “Pore solution composition of alkali-activated slag/fly ash pastes.” Cem. Concr. Res. 115 (1): 230–250. https://doi.org/10.1016/j.cemconres.2018.10.010.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 11November 2019

History

Published online: Aug 21, 2019
Published in print: Nov 1, 2019
Discussion open until: Jan 21, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Research Lecturer, Faculty of Civil Engineering, Ton Duc Thang Univ., 19 Nguyen Huu Tho, Tan Phong Ward, District 7, Ho Chi Minh City 700000, Vietnam (corresponding author). ORCID: https://orcid.org/0000-0003-1735-1758. Email: [email protected]
Ravil Z. Rakhimov
Professor, Dept. of Building Materials, Kazan State Univ. of Architecture and Engineering, Kazan 420043, Russia.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share