Abstract

Surface soil erosion is one of the most common slope degradation processes. In this study, microbial calcification (MC), a stimulated natural biocementation process, was investigated for its feasibility as a sandy-slope surface erosion control method. An artificial model slope at 30° was treated by MC via the surface spraying method at three cementation solution concentrations (0.2, 1.0, and 2.0 M). Simulated rainfall was sprayed on the slope surface at 5  mm/min for 30 min. Results show that MC treatment with 0.2- and 1.0-M cementation solution improves surface erosion resistance in terms of observed erosion pattern with time, soil loss weight and rate, and outflow properties. However, MC treatment with 2.0-M cementation solution does not improve surface erosion resistance. Instead, substantial soil loss is observed under rainfall impact while soil is washed away in cemented aggregates. At the end of the rainfall erosion test, microstructural features of the surface samples were identified by scanning electron microscope (SEM) observation. It is found that the effectiveness of MC for sandy-slope surface erosion control is determined by (1) overall CaCO3 precipitation content, (2) treatment depth, and (3) competence between CaCO3 crystal growth and nucleation process.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41572246, 41772280, and 41322019), Natural Science Foundation of Jiangsu Province (BK20171228 and BK20170394), Key Project of National Natural Science Foundation of China (Grant No. 41230636), and the Fundamental Research Funds for the Central Universities.

References

Al Qabany, A., and K. Soga. 2013. “Effect of chemical treatment used in MICP on engineering properties of cemented soils.” Géotechnique 63 (4): 331–339. https://doi.org/10.1680/geot.SIP13.P.022.
Al Qabany, A., K. Soga, and C. Santamarina. 2012. “Factors affecting efficiency of microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 138 (8): 992–1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.
Amin, M., S. M. A. Zomorodian, and B. C. O’Kelly. 2017. “Reducing the hydraulic erosion of sand using microbial-induced carbonate precipitation.” Proc. Inst. Civ. Eng. Ground Improv. 170 (2): 112–122. https://doi.org/10.1680/jgrim.16.00028.
Assouline, S., and M. Ben-Hur. 2006. “Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing.” Catena 66 (3): 211–220. https://doi.org/10.1016/j.catena.2006.02.005.
Bao, R., J. Li, L. Li, T. J. Cutright, L. Chen, J. Zhu, and J. Tao. 2017. “Bio-inspired bridge scour countermeasures: Streamlining and biocementation.” In Proc., 2017 Int. Conf. on Transportation Infrastructure and Materials (ICTIM 2017). Lancaster, PA: DEStech Publications.
Chaplot, V. A. M., and Y. Le Bissonnais. 2003. “Runoff features for interrill erosion at different rainfall intensities, slope lengths, and gradients in an agricultural loessial hillslope.” Soil Sci. Soc. Am. J. 67 (3): 844–851. https://doi.org/10.2136/sssaj2003.0844.
Chau, N. L., and L. M. Chu. 2017. “Fern cover and the importance of plant traits in reducing erosion on steep soil slopes.” Catena 151 (Apr): 98–106. https://doi.org/10.1016/j.catena.2016.12.016.
Cheng, L., and R. Cord-Ruwisch. 2012. “In situ soil cementation with ureolytic bacteria by surface percolation.” Ecol. Eng. 42 (May): 64–72. https://doi.org/10.1016/j.ecoleng.2012.01.013.
Cheng, L., R. Cord-Ruwisch, and M. A. Shahin. 2013. “Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation.” Can. Geotech. J. 50 (1): 81–90. https://doi.org/10.1139/cgj-2012-0023.
Cheng, L., M. A. Shahin, and R. Cord-Ruwisch. 2014. “Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments.” Geotechnique 64 (12): 1010–1013. https://doi.org/10.1680/geot.14.T.025.
Cheng, L., M. A. Shahin, and D. Mujah. 2017. “Influence of key environmental conditions on microbially induced cementation for soil stabilization.” J. Geotech. Geoenviron. Eng. 143 (1): 04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586.
Choi, S.-G., S. Wu, and J. Chu. 2016. “Biocementation for sand using an eggshell as calcium source.” J. Geotech. Geoenviron. Eng. 142 (10): 06016010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001534.
Chou, C.-W., E. Seagren, A. H. Aydilek, and M. Lai. 2011. “Biocalcification of sand through ureolysis.” J. Geotech. Geoenviron. Eng. 137 (12): 1179–1189. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000532.
Chu, J., V. Ivanov, V. Stabnikov, and B. Li. 2013. “Microbial method for construction of aquaculture pond in sand.” Géotechnique 63 (10): 871–875. https://doi.org/10.1680/geot.SIP13.P.007.
Cochrane, B. H. W., J. M. Reichert, F. L. F. Eltz, and L. D. Norton. 2005. “Controlling soil erosion and runoff with polyacrylamide and phosphogypsum on subtropical soil.” Am. Soc. Agric. Eng. 48 (1): 149–154. https://doi.org/10.13031/2013.17958.
Cruden, D. M., and D. J. Varnes. 1996. Landslide types and processes. Washington, DC: Transportation Research Board.
DeJong, J. T., et al. 2013. “Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges.” Geotechnique 63 (4): 287–301. https://doi.org/10.1680/geot.SIP13.P.017.
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
Delage, P., D. Marcial, Y. J. Cui, and X. Ruiz. 2006. “Ageing effects in a compacted bentonite: A microstructure approach.” Géotechnique 56 (5): 291–304. https://doi.org/10.1680/geot.2006.56.5.291.
Fang, H., L. Sun, and Z. H. Tang. 2015. “Effects of rainfall and slope on runoff, soil erosion and rill development: An experimental study using two loess soils.” Hydrol. Processes 29 (11): 2649–2658. https://doi.org/10.1002/hyp.10392.
Fattet, M., Y. Fu, M. Ghestem, W. Ma, M. Foulonneau, J. Nespoulous, Y. Le Bissonnais, and A. Stokes. 2011. “Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength.” Catena 87 (1): 60–69. https://doi.org/10.1016/j.catena.2011.05.006.
Gao, Y., X. Tang, J. Chu, and J. He. 2019. “Microbially induced calcite precipitation for seepage control in sandy soil.” Geomicrobiol. J. 36 (4): 366–375. https://doi.org/10.1080/01490451.2018.1556750.
Gat, D., Z. Ronen, and M. Tsesarsky. 2017. “Long-term sustainability of microbial-induced CaCO3 precipitation in aqueous media.” Chemosphere 184 (Oct): 524–531. https://doi.org/10.1016/j.chemosphere.2017.06.015.
Gomez, M. G., B. C. Martinez, J. T. DeJong, C. E. Hunt, L. A. DeVlaming, D. W. Major, and S. M. Dworatzek. 2015. “Field-scale bio-cementation tests to improve sands.” Proc. Inst. Civ. Eng. Ground Improv. 168 (3): 206–216. https://doi.org/10.1680/grim.13.00052.
Guerra, A. J. T., M. A. Fullen, M. C. O. Jorge, J. F. R. Bezerra, and M. S. Shokr. 2017. “Slope processes, mass movement and soil erosion: A review.” Pedosphere 27 (1): 27–41. https://doi.org/10.1016/S1002-0160(17)60294-7.
Hamdan, N., and E. Kavazanjian. 2016. “Enzyme-induced carbonate mineral precipitation for fugitive dust control.” Géotechnique 66 (7): 546–555. https://doi.org/10.1680/jgeot.15.P.168.
Huang, C., J. M. Bradford, and J. H. Cushman. 1983. “A numerical study of raindrop impact phenomena: The elastic deformation case.” Soil Sci. Soc. Am. J. 47 (5): 855–861. https://doi.org/10.2136/sssaj1983.03615995004700050003x.
Jiang, N.-J., and K. Soga. Forthcoming. “Erosional behavior of gravel-sand mixtures stabilized by microbial induced calcite precipitation (MICP).” Soils Found. https://doi.org/10.1016/j.sandf.2019.02.003.
Jiang, N.-J., and K. Soga. 2017. “The applicability of microbially induced carbonate precipitation for internal erosion control in gravel-sand mixtures.” Géotechnique 67 (1): 42–55. https://doi.org/10.1680/jgeot.15.P.182.
Jiang, N.-J., K. Soga, and M. Kuo. 2017. “Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures.” J. Geotech. Geoenviron. Eng. 143 (3): 04016100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559.
Jiang, N.-J., H. Yoshioka, K. Yamamoto, and K. Soga. 2016. “Ureolytic activities of a urease producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP).” Ecol. Eng. 90 (May): 96–104. https://doi.org/10.1016/j.ecoleng.2016.01.073.
Khan, M. N. H., G. G. N. N. Amarakoon, S. Shimazaki, and S. Kawasaki. 2015. “Coral sand solidification test based on microbially induced carbonate precipitation using ureolytic bacteria.” Mater. Trans. 56 (10): 1725–1732. https://doi.org/10.2320/matertrans.M-M2015820.
Kinnell, P. I. A. 2005. “Raindrop impact induced erosion processes and prediction: A review.” Hydrol. Process 19 (14): 2815–2844. https://doi.org/10.1002/hyp.5788.
Magleby, R., C. Sandretto, W. Crosswhile, and C. T. Osborn. 1995. Soil erosion and conservation in the United States: An overview. Washington, DC: USDA.
Maleki, M., S. Ebrahimi, F. Asadzadeh, and M. E. Tabrizi. 2016. “Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil.” Int. J. Environ. Sci. Technol. 13 (3): 937–944. https://doi.org/10.1007/s13762-015-0921-z.
Meyer, F. D., S. Bang, S. Min, and L. D. Stetler. 2011. “Microbiologically-induced soil stabilization: Application of Sporosarcina pasteurii for fugitive dust control.” In Proc., Geo-Frontiers 2011: Advances in Geotechnical Engineering, edited by J. Han, and D. E. Alzamora. Reston, VA: ASCE.
Mitchell, J. K., and K. Soga. 2005. Fundamentals of soil behavior. 3rd ed. Hoboken, NJ: Wiley.
Montoya, B., J. T. DeJong, and R. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Geotechnique 63 (4): 302–312. https://doi.org/10.1680/geot.SIP13.P.019.
Morgan, R. P. C., and R. J. Rickson. 2003. Slope stabilization and erosion control: A bioengineering approach. London: E & FN Spon.
Mortensen, B. M., and J. T. DeJong. 2011. “Strength and stiffness of MICP treated sand subjected to various stress paths.” In Proc., Geo-Frontiers 2011: Advances in Geotechnical Engineering, edited by J. Han and D. E. Alzamora, 4012–4020. Reston, VA: ASCE.
Norris, J. E., A. Stokes, S. B. Michovski, E. Cammeraat, R. van Beek, B. C. Nicoll, and A. Achim. 2008. Slope stability and erosion control: Ecotechnological solutions. Dordrecht, Netherlands: Springer.
O’Donnell, S. T., E. Kavazanjian, Jr., and B. E. Rittmann. 2017. “MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. II: MICP.” J. Geotech. Geoenviron. Eng. 143 (12): 04017095. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001806.
Operstein, V., and S. Frydman. 2000. “The influence of vegetation on soil strength.” Proc. Inst. Civ. Eng. Ground Improv. 4 (2): 81–89. https://doi.org/10.1680/grim.2000.4.2.81.
Ramachandran, S. K., V. Ramakrishnan, and S. S. Bang. 2001. “Remediation of concrete using microorganisms.” ACI Mater. J. 98 (1): 3–9.
Romkens, M. J. M., K. Helming, and S. N. Prasad. 2002. “Soil erosion under different rainfall intensities, surface roughness, and soil water regimes.” Catena 46 (2–3): 103–123. https://doi.org/10.1016/S0341-8162(01)00161-8.
Salifu, E., E. MacLachlan, K. R. Iyer, C. W. Knapp, and A. Tarantino. 2016. “Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation.” Eng. Geol. 201 (Feb): 96–105. https://doi.org/10.1016/j.enggeo.2015.12.027.
Seagren, E., and A. Aydilek. 2010. “Biomediated geomechanical processes.” In Environmental biology, 319–349. Hoboken, NJ: Wiley.
Shanahan, C., and B. M. Montoya. 2014. “Strengthening coastal sand dunes using microbial-induced calcite precipitation.” In Proc. Geo-Congress 2014, GSP 234, edited by M. Abu-Farsakh, X. Yu, and L. R. Hoyos. Reston, VA: ASCE.
Shi, Z. H., N. F. Fang, F. Z. Wu, L. Wang, B. J. Yue, and G. L. Wu. 2012. “Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes.” J. Hydrol. 454–455 (Aug): 123–130. https://doi.org/10.1016/j.jhydrol.2012.06.004.
Somani, R. S., K. S. Patel, A. R. Mehta, and R. V. Jasra. 2006. “Examination of the polymorphs and particle size of calcium carbonate precipitated using still effluent (i.e., CaCl2+NaCl solution) of soda ash manufacturing process.” Ind. Eng. Chem. Res. 45 (15): 5223–5230. https://doi.org/10.1021/ie0513447.
Soon, N. W., L. M. Lee, T. C. Khun, and H. S. Ling. 2013. “Improvements in engineering properties of soils through microbial-induced calcite precipitation.” KSCE J. Civ. Eng. 17 (4): 718–728. https://doi.org/10.1007/s12205-013-0149-8.
Soon, N. W., L. M. Lee, T. C. Khun, and H. S. Ling. 2014. “Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 140 (5): 04014006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001089.
Stabnikov, V., M. Naeimi, V. Ivanov, and J. Chu. 2011. “Formation of water-impermeable crust on sand surface using biocement.” Cem. Concr. Res. 41 (11): 1143–1149. https://doi.org/10.1016/j.cemconres.2011.06.017.
Tang, C. S., B. Shi, W. Gao, F. Chen, and Y. Cai. 2007. “Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil.” Geotext. Geomembr. 25 (3): 194–202. https://doi.org/10.1016/j.geotexmem.2006.11.002.
Tang, C. S., B. Shi, and L. Z. Zhao. 2010. “Interfacial shear strength of fiber reinforced soil.” Geotext. Geomembr. 28 (1): 54–62. https://doi.org/10.1016/j.geotexmem.2009.10.001.
Tang, C. S., D. Y. Wang, B. Shi, and J. Li. 2016. “Effect of wetting-drying cycles on profile mechanical behavior of soils with different initial conditions.” Catena 139 (Apr): 105–116. https://doi.org/10.1016/j.catena.2015.12.015.
Wang, X., J. Tao, R. Bao, T. Tran, and S. Tucker-Kulesza. 2018. “Surficial soil stabilization against water-induced erosion using polymer-modified microbially induced carbonate precipitation.” J. Mater. Civ. Eng. 30 (10): 04018267. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002490.
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Woo, M. K., G. Fang, and P. D. diCenzo. 1997. “The role of vegetation in the retardation of rill erosion.” Catena 29 (2): 145–159. https://doi.org/10.1016/S0341-8162(96)00052-5.
Yu, J., T. Lei, I. Shainberg, A. I. Mamedov, and G. J. Levy. 2003. “Infiltration and erosion in soils treated with dry pam and gypsum.” Soil Sci. Soc. Am. J. 67 (2): 630–636. https://doi.org/10.2136/sssaj2003.6300.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 11November 2019

History

Received: Sep 22, 2018
Accepted: May 24, 2019
Published online: Aug 16, 2019
Published in print: Nov 1, 2019
Discussion open until: Jan 16, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Dept. of Civil and Environmental Engineering, Univ. of Hawaii at Manoa, Honolulu, HI 96822. ORCID: https://orcid.org/0000-0001-6070-4307. Email: [email protected]
Professor, School of Earth Sciences and Engineering, Nanjing Univ., Nanjing 210023, PR China (corresponding author). ORCID: https://orcid.org/0000-0002-6419-6116. Email: [email protected]
Li-Yang Yin [email protected]
Research Scholar, School of Earth Sciences and Engineering, Nanjing Univ., Nanjing 210023, PR China. Email: [email protected]
Yue-Han Xie [email protected]
Research Scholar, School of Earth Sciences and Engineering, Nanjing Univ., Nanjing 210023, PR China. Email: [email protected]
Professor, School of Earth Sciences and Engineering, Nanjing Univ., Nanjing 210023, PR China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share