Abstract

Research intends to improve the durability of asphalt binder and its performance related to rutting and fatigue life. Nanotechnology has been used in many sectors over the years, such as the chemical industry, automotive industry, medicine, and civil engineering. Asphalt binder modification with nanomaterials can improve rutting resistance and alleviate fatigue cracking of asphalt mixtures. In this study, titanium dioxide (TiO2) nanoparticles were mixed in a base asphalt binder of penetration grade 50/70 at rates of 0%, 3%, 4%, and 5% by weight of binder. The rheology of the blends was then studied through performance grade (PG), multiple stress creep recovery (MSCR), linear amplitude sweep (LAS), penetration test, softening point, and rotational viscosity. The results show that the addition of nanoparticles of titanium dioxide increases the fatigue life and resistance to permanent deformations and to the aging process.

Get full access to this article

View all available purchase options and get full access to this article.

References

AASHTO. 2010. Standard specification for performance-graded asphalt binder. Test standard specifications for transportation materials and methods of sampling and testing. AASHTO M320. Washington, DC: AASHTO.
AASHTO. 2012. Standard method of test for estimating fatigue resistance of asphalt binders using the linear amplitude sweep. Test standard specifications for transportation materials and methods of sampling and testing. AASHTO TP 101. Washington, DC: AASHTO.
ABNT (Associação Brasileira de Normas Técnicas). 2004. Materiais Betuminosos–Determinação da viscosidade em temperaturas elevadas usando viscosímetro rotacional. ABNT NBR 15184. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2009. Materiais Betuminosos–Determinação do efeito do calor e do ar em uma película delgada rotacional. ABNT NBR 15235. Rio de Janeiro, Brazil: ABNT.
Ali, S. I. A., A. Ismail, M. R. Karim, N. I. Yussof, R. A. Al-Mansob, and E. Aburkaba. 2017. “Performance evaluation of Al2O3 nanoparticle-modified asphalt binder.” Road Mater. Pavement Design. 18 (6): 1251–1268. https://doi.org/10.1080/14680629.2016.1208621.
Ashish, P. K., D. Singh, and S. Bohm. 2017. “Investigation on influence of nanoclay addition on rheological performance of asphalt binder.” Road Mater. Pavement Design. 18 (5): 1007–1026. https://doi.org/10.1080/14680629.2016.1201522.
ASTM. 2010. Standard test method for multiple stress creep and recovery (MSCR) of asphalt binder using a dynamic shear rheometer. ASTM D7405. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard specification for performance graded asphalt binder. ASTM D6373. West Conshohocken, PA: ASTM.
DNIT (Departamento Nacional de Infraestrutura de Transporte). 2010a. Material Asfáltico–Determinação da penetração. ME 155/2010. Rio de Janeiro, Brazil: DNIT.
DNIT (Departamento Nacional de Infraestrutura de Transporte). 2010b. Materiais Asfálticos–Determinação do ponto de amolecimento–Método do Anel e Bola. ME 131/2010. Rio de Janeiro, Brazil: DNIT.
Elseifi, M. A., L. N. Mohammad, I. Glover, I. Negulescu, W. H. Daly, and C. Abadie. 2010. “Relationship between molecular compositions and rheological properties of neat asphalt binder at low and intermediate temperatures.” J. Mater. Civ. Eng. 22 (12): 1288–1294. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000138.
Elseifi, M. A., S. Salari, L. N. Mohammad, M. Hassan, W. H. Daly, and S. Dessouky. 2012. “New approach to recycling asphalt shingles in hot mix asphalt.” J. Mater. Civ. Eng. 24 (11): 1403–1411. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000520.
Fang, C., R. Yu, S. Liu, and Y. Li. 2013. “Nanomaterials applied in asphalt modification: A review.” J. Mater. Sci. Technol. 29 (7): 589–594. https://doi.org/10.1016/j.jmst.2013.04.008.
Farias, L. G. A. T., J. L. Leitinho, B. D. C. Amoni, J. B. Bastos, J. B. Soares, S. D. A. Soares, and H. B. De Sant’ana. 2016. “Effects of nanoclay and nanocomposites on bitumen rheological properties.” Constr. Build. Mater. 125 (Oct): 873–883. https://doi.org/10.1016/j.conbuildmat.2016.08.127.
Galooyak, S. S., B. Dabir, A. E. Nazarbeygi, and A. Moeini. 2010. “Rheological properties and storage stability of bitumen/SBS/montmorillonite composites.” Constr. Build. Mater. 24 (3): 300–307. https://doi.org/10.1016/j.conbuildmat.2009.08.032.
Golestani, B., B. H. Nam, F. M. Nejad, and S. Fallah. 2015. “Nanoclay application to asphalt concrete: Characterization of polymer and linear nanocomposite-modified asphalt binder and mixture.” Constr. Build. Mater. 91 (Aug): 32–38. https://doi.org/10.1016/j.conbuildmat.2015.05.019.
InterBrasil SA. 2015. Rutile type titanium dioxide. São Bento do Sul, Brazil: InterBrasil SA.
Jahromi, S. G., and A. Khodaii. 2009. “Effects of nanoclay on rheological properties of bitumen binder.” Constr. Build. Mater. 23 (8): 2894–2904. https://doi.org/10.1016/j.conbuildmat.2009.02.027.
Li, R., F. Xiao, S. Amirkhanian, Z. You, and J. Huang. 2017. “Developments of nano materials and technologies on asphalt materials—A review.” Constr. Build. Mater. 143 (Jul): 633–648. https://doi.org/10.1016/j.conbuildmat.2017.03.158.
Nascimento, T. C. B. 2015. “Efeito Dos Envelhecimentos Termo-Oxidativo E Foto-Oxidativo Sobre Propriedades Reológicas De Ligantes Asfálticos Modificados.” Mestrado Dissertação, Escola de Engenharia de São Carlos, da Universidade de São Paulo, São Carlos.
Nejad, F. M., H. Nazari, K. Naderi, F. Khosroshahi, and M. H. Oskuei. 2017. “Thermal and rheological properties of nanoparticle modified asphalt binder at low and intermediate temperature range.” Pet. Sci. Technol. 35 (7): 641–646. https://doi.org/10.1080/10916466.2016.1276589.
Shafabakhsh, G. H., and O. J. Ani. 2015. “Experimental investigation of effect of Nano TiO2/SiO2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates.” Constr. Build. Mater. 98 (Nov): 692–702. https://doi.org/10.1016/j.conbuildmat.2015.08.083.
Shafabakhsh, G. H., S. M. Mirabdolazimi, and E. M. Sadeghnejad. 2014. “Evaluation the effect of nano-TiO2 on the rutting and fatigue behaviour of asphalt mixtures.” Constr. Build. Mater. 54 (Mar): 566–571. https://doi.org/10.1016/j.conbuildmat.2013.12.064.
Shen, R. 2009. “Surface modification of nanometer and micron sized particles and their applications.” Ph.D. thesis, Dept. of Chemical Engineering, Univ. of Rochester.
Sun, Z., J. Yi, Y. Huang, D. Feng, and C. Guo. 2016. “Properties of asphalt binder modified by bio-oil derived from waste cooking oil.” Constr. Build. Mater. 102 (Part 1): 496–504. https://doi.org/10.1016/j.conbuildmat.2015.10.173.
Tanzadeh, J., F. Vahedi, P. T. Kheiry, and R. Tanzadeh. 2013. “Laboratory study on the effect of nano TiO2 on rutting performance of asphalt pavements.” In Vol. 622 of Advanced materials research, 990–994. Dürnten, Switzerland: Trans Tech.
Yao, H., Z. You, L. Li, C. H. Lee, D. Wingard, Y. K. Yap, and X. Shi. 2012. “Properties and chemical bonding of asphalt and asphalt mixtures modified with nanosilica.” J. Mater. Civ. Eng. 25: 1619–1630.
You, Z., J. Beale-Mils, J. M. Foley, S. Roy, and G. M. Odegard. 2011. “Nanoclay-modified asphalt materials: Preparation and characterization.” Constr. Build. Mater. 25 (2): 1072–1078. https://doi.org/10.1016/j.conbuildmat.2010.06.070.
Zapién-Castillo, S., J. L. Rivera-Armenta, M. Y. Chávez-Cinco, B. A. Salazar-Cruz, and A. M. Mendoza-Martínez. 2016. “Physical and rheological properties of asphalt modified with SEBS/montmorillonite nanocomposite.” Constr. Build. Mater. 106: 349–356.
Zhang, H., M. Su, S. Zhao, Y. Zhang, and Z. Zhang. 2016. “High and low temperature properties of nano-particles/polymer modified asphalt.” Constr. Build. Mater. 114 (Jul): 323–332. https://doi.org/10.1016/j.conbuildmat.2016.03.118.
Zhang, H., C. Zhu, J. Yu, C. Shi, and D. Zhang. 2015. “Influence of surface modification on physical and ultraviolet aging resistance of bitumen containing inorganic nanoparticles.” Constr. Build. Mater. 98 (Nov): 735–740. https://doi.org/10.1016/j.conbuildmat.2015.08.138.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 10October 2019

History

Received: Oct 5, 2018
Accepted: Apr 24, 2019
Published online: Jul 30, 2019
Published in print: Oct 1, 2019
Discussion open until: Dec 30, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Paulo Germano Tavares Marinho Filho https://orcid.org/0000-0003-2491-6390 [email protected]
Doctoral Student, Dept. of Civil Engineering, Federal Univ. of Campina Grande, Campina Grande, PB 58429-900, Brazil. ORCID: https://orcid.org/0000-0003-2491-6390. Email: [email protected]
Alana Tamires Rodrigues dos Santos [email protected]
Graduated in Civil Engineering, Dept. of Civil Engineering, Federal Univ. of Campina Grande, Campina Grande, PB 58429-900, Brazil. Email: [email protected]
Lêda Christiane de Figueiredo Lopes Lucena, Ph.D. [email protected]
Professor, Dept. of Civil Engineering, Federal Univ. of Campina Grande, Campina Grande, PB 58429-900, Brazil (corresponding author). Email: [email protected]; [email protected]
Valter Ferreira de Sousa Neto [email protected]
Doctoral Student, Federal Univ. of Campina Grande, Campina Grande, PB 58429-900, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share