Technical Papers
Jun 21, 2019

Effect of Polyacrylamide on Improvement of Dredger Fill with Vacuum Preloading Method

Publication: Journal of Materials in Civil Engineering
Volume 31, Issue 9

Abstract

Dredger fill possesses undesirable engineering properties due to high water content, compressibility, and low permeability, causing insufficient consolidation and long treatment periods using a vacuum preloading method. This paper investigates an advanced treatment method using chemically additive polyacrylamide (PAM) on dredger fill combined with a vacuum preloading method via laboratory model tests. Anionic polyacrylamide (APAM, a PAM class based on ionic classification) exhibited better performance on accelerating water discharge, reducing the time for trial filtration tests almost in half, and so was adopted in vacuum preloading model tests. The test results show that the application of APAM reduces 30% to 50% of the dredger fill consolidation time, accelerates the dissipation of excess pore pressure, and reduces the vacuum loss in vertical transition for the whole treatment duration. The vane shear strength post-treatment was observed to increase by 30% to 55% with an additive percentage of 30  mg/L of APAM, which is proposed for the treatment of Tianjin Binhai dredger fill. The results provide a novelty approach to the physical mechanical alteration of dredged fill to break through the unsatisfactory limitation of conventional vacuum preloading treatment.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors are grateful to the National Key R&D Plan (Grant No. 2017YFC0805402), the National Natural Science Foundation of China (Grant No. 51578371), Open Project Fund of State Key Laboratory of Disaster Reduction in Civil Engineering (Grant No. SLDRCE17-01), and Beijing-Tianjin-Hebei Special Projects of Cooperation (Grant No. 16JCJDJC40000) for funding this work.

References

Barvenik, F. W. 1994. “Polyacrylamide characteristics related to soil applications.” Soil. Sci. 158 (4): 235–243. https://doi.org/10.1097/00010694-199410000-00002.
Bergado, D. T., M. C. Alfaro, and A. S. Balasubramaniam. 1993. “Improvement of soft Bangkok clay using vertical drains.” Geotext. Geomembr. 12 (7): 615–663. https://doi.org/10.1016/0266-1144(93)90032-J.
Bergado, D. T., A. S. Balasubramaniam, R. J. Fannin, and R. D. Holtz. 2002. “Prefabricated vertical drains (PVDs) in soft Bangkok clay: A case study of the new Bangkok International Airport project.” Can. Geotech. J. 39 (2): 304–315. https://doi.org/10.1139/t01-100.
Cai, Y. Q., J. Wang, J. Ma, P. Wang, and H. Fu. 2016. “A new method to improve the effectiveness of vacuum preloading on the consolidation of dredged fill in Wenzhou.” Jpn. Geotech. Soc. Spec. Publ. 2 (51): 1794–1797.
Chai, J., N. Miura, and D. T. Bergado. 2008. “Preloading clayey deposit by vacuum pressure with cap-drain: Analyses versus performance.” Geotext. Geomembr. 26 (3): 220–230. https://doi.org/10.1016/j.geotexmem.2007.10.004.
Chai, J. C., J. P. Carter, and S. Hayashi. 2005. “Ground deformation induced by vacuum consolidation.” J. Geotech. Geoenviron. Eng. 131 (12): 1552–1561. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:12(1552).
Chen, G. H., and J. Z. Zhu. 2013. “An experiment for effects of different additives on strength of sediment solidification.” In Vol. 357 of Applied Mechanics and Materials, 1235–1240. Zurich, Switzerland: Trans Tech Publications.
Chen, M., S. L. Shen, A. Arulrajah, and H. N. Wu. 2015. “Laboratory evaluation of the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay.” Geotext. Geomembr. 43 (6): 515–523. https://doi.org/10.1016/j.geotexmem.2015.05.004.
Chu, J., M. W. Bo, and A. Arulrajah. 2009. “Soil improvement works for an offshore landreclamation.” Geotech. Eng. Proc. Inst. Civ. Eng. 162 (1): 21–32. https://doi.org/10.1680/geng.2009.162.1.21.
Chu, J., M. W. Bo, and V. Choa. 2004. “Practical considerations for using vertical drains in soil improvement projects.” Geotext. Geomembr. 22 (1): 101–117. https://doi.org/10.1016/S0266-1144(03)00054-2.
Chu, J., and S. W. Yan. 2005a. “Application of the vacuum preloading method in soil improvement projects.” In Vol. 3 of Elsevier geo-engineering book series, 91–117. London: Elsevier.
Chu, J., and S. W. Yan. 2005b. “Estimation of degree of consolidation for vacuum preloading projects.” Int. J. Geomech. 5 (2): 158–165. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:2(158).
Chu, J., S. W. Yan, and H. Yang. 2000. “Soil improvement by the vacuum preloading method for an oil storage station.” Geotechnique 50 (6): 625–632. https://doi.org/10.1680/geot.2000.50.6.625.
Consoli, N. C., A. D. Rosa, M. B. Corte, L. D. S. Lopes, and B. S. Consoli. 2011. “Porosity-cement ratio controlling strength of artificially cemented clays.” J. Mater. Civ. Eng. 23 (8): 1249–1254. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000283.
Daniels, J. L., H. I. Inyang, and I. K. Iskandar. 2003. “Durability of Boston blue clay in waste containment applications.” J. Mater. Civ. Eng. 15 (2): 144–152. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(144).
Gerald, A. M., and A. Shahriar. 2000. “Influence of Soil Type on Stabilization with Cement Kiln Dust.” Constr. Build. Mater. 14 (2): 89–97. https://doi.org/10.1016/S0950-0618(00)00007-6.
Holtz, R. D., and O. Wager. 1975. Preloading by vacuum: Current prospects. Washington, DC: Transportation Research Board.
Indraratna, B., C. Rujikiatkamjorn, R. Kelly, and H. Buys. 2012. “Soft soil foundation improved by vacuum and surcharge loading.” Proc. Inst. Civ. Eng. Ground Improv. 165 (2): 87–96. https://doi.org/10.1680/grim.10.00032.
Inyang, H. I., S. Bae, G. Mbamalu, and S. W. Park. 2007. “Aqueous polymer effects on volumetric swelling of Na-montmorillonite.” J. Mater. Civ. Eng. 19 (1): 84–90. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(84).
Jiao, Y., J. He, P. Zhou, and Z. Cao. 2018. “Potential of flocculant-aided soil slurry dewatering in land reclamation: Laboratory investigations.” Adv. Civ. Eng. 2018: 1–6. https://doi.org/10.1155/2018/8040193.
Kim, S., and A. M. Palomino. 2009. “Polyacrylamide-treated kaolin: A fabric study.” Appl. Clay Sci. 45 (4): 270–279. https://doi.org/10.1016/j.clay.2009.06.009.
Kjellman, W. 1952. “Consolidation of clayey soils by atmospheric pressure.” In Proc., Conf. on Soil Stabilization, 258–263. Boston: Massachusetts Institute of Technology.
Latifi, N., C. L. Meehan, M. Z. Abd Majid, and S. Horpibulsuk. 2016. “Strengthening montmorillonitic and kaolinitic clays using a calcium-based non-traditional additive: A micro-level study.” Appl. Clay Sci. 132–133: 182–193. https://doi.org/10.1016/j.clay.2016.06.004.
Latifi, N., F. Vahedifard, E. Ghazanfari, S. Horpibulsuk, A. Marto, and J. Williams. 2017. “Sustainable improvement of clays using low-carbon nontraditional additive.” Int. J. Geomech. 18 (3): 04017162. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001086.
Latifi, N., F. Vahedifard, E. Ghazanfari, and A. S. A. Rashid. 2018. “Sustainable usage of calcium carbide residue for stabilization of clays.” J. Mater. Civ. Eng. 30 (6): 04018099. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002313.
Li, L. H., Q. Wang, N. X. Wang, and J. P. Wang. 2009. “Vacuum dewatering and horizontal drainage blankets: A method for layered soil reclamation.” Bull. Eng. Geol. Environ. 68 (2): 277–285. https://doi.org/10.1007/s10064-009-0200-7.
Liu, F., W. Wu, H. Fu, J. Wang, J. Hai, Y. Cai, and X. Lou. 2019. “Application of flocculation combined with vacuum preloading to reduce river-dredged sludge.” Mar. Georesour.Geotechnol. 1–10. https://doi.org/10.1080/1064119X.2018.1564092.
Liu, S. Y., D. W. Zhang, G. Y. Du, L. Songyu, and W. J. Han. 2016. “A new combined vacuum preloading with pneumatic fracturing method for soft ground improvement.” Procedia Eng. 143: 454–461. https://doi.org/10.1016/j.proeng.2016.06.057.
Mesri, G., and A. Q. Khan. 2012. “Ground improvement using vacuum loading together with vertical drains.” J. Geotech. Geoenviron. Eng. 138 (6): 680–689. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000640.
Mohamedelhassan, E., and J. Q. Shang. 2002. “Vacuum and surcharge combined one-dimensional consolidation of clay soils.” Can. Geotech. J. 39 (5): 1126–1138. https://doi.org/10.1139/t02-052.
Muhammad, N., S. Siddiqua, and N. Latifi. 2018. “Solidification of Subgrade materials using magnesium alkalinization: A sustainable additive for construction.” J. Mater. Civ. Eng. 30 (10): 04018260. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002484.
Nerimitknornburee, A., S. Horpibulsuk, S. L. Shen, A. Chinkulkijniwat, A. Arulrajah, and M. M. Disfani. 2015. “Durability against weting-drying cycles of sustainable lightweight cellular cemented construction material comprising clay and fly ash waste.” Constr. Build. Mater. 77: 41–49.
Orts, W. J., A. Roa-Espinosa, R. E. Sojka, G. M. Glenn, S. H. Imam, K. Erlacher, and J. S. Pedersen. 2007. “Use of synthetic polymers and biopolymers for soil stabilization in agricultural, construction, and military applications.” J. Mater. Civ. Eng. 19 (1): 58–66. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(58).
Qian, J. H., W. B. Zhao, Y. K. Cheung, and P. K. K. Lee. 1992. “The theory and practice of vacuum preloading.” Comput. Geotech. 13 (2): 103–118. https://doi.org/10.1016/0266-352X(92)90027-Q.
Qiu, Q. C., H. H. Mo, and Z. L. Dong. 2007. “Vacuum pressure distribution and pore pressure variation in ground improved by vacuum preloading.” Can. Geotech. J. 44 (12): 1433–1445. https://doi.org/10.1139/T07-064.
Quang, N. D., and P. H. Giao. 2014. “Improvement of soft clay at a site in the Mekong Delta by vacuum preloading.” Geomech. Eng. 6 (5): 419–436. https://doi.org/10.12989/gae.2014.6.5.419.
Rashid, A. S. A., N. Latifi, C. L. Meehan, and K. N. Manahiloh. 2017. “Sustainable improvement of tropical residual soil using an environmentally friendly additive.” Geotech. Geol. Eng. 35 (6): 2613–2623. https://doi.org/10.1007/s10706-017-0265-1.
Saowapakpiboon, J., D. T. Bergado, P. Voottipruex, L. G. Lam, and K. Nakakuma. 2011. “PVD improvement combined with surcharge and vacuum preloading including simulations.” Geotext. Geomembr. 29 (1): 74–82. https://doi.org/10.1016/j.geotexmem.2010.06.008.
Sharma, R. S., B. R. Phanikumar, and B. V. Rao. 2008. “Engineering behavior of a remolded expansive clay blended with lime, calcium chloride, and rice-husk ash.” J. Mater. Civ. Eng. 20 (8): 509–515. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:8(509).
Sukmak, P., S. Horpibulsuk, and S. L. Shen. 2013a. “Strength development in clay-fly ash geopolymer.” Constr. Build. Mater. 40: 566–574. https://doi.org/10.1016/j.conbuildmat.2012.11.015.
Sukmak, P., S. Horpibulsuk, S. L. Shen, P. Chindaprasirt, and C. Suksiripattanapong. 2013b. “Factors influencing strength development in clay-fly ash geopolymer.” Constr. Build. Mater. 47: 1125–1136. https://doi.org/10.1016/j.conbuildmat.2013.05.104.
Tang, T. Q., and L. Q. Zhou. 2007. Environment engineering geology of soft soil. Beijing: Transportation Press.
Tao, G. L., X. L. Shi, C. H. Jiang, X. G. Feng, and L. Shu. 2014. “Experimental study of dredged sediment sample analysis and solidification in waterway regulation engineering.” Appl. Mech. Mater. 638: 1252–1256. https://doi.org/10.4028/www.scientific.net/AMM.638-640.1252.
Theng, B. K. G. 1979. Formation and properties of clay-polymer complexes, 295–296. London: Elsevier.
Wang, J., J. Ma, F. Liu, W. Mi, Y. Cai, H. Fu, and P. Wang. 2016a. “Experimental study on the improvement of marine clay slurry by electroosmosis-vacuum preloading.” Geotext. Geomembr. 44 (4): 615–622. https://doi.org/10.1016/j.geotexmem.2016.03.004.
Wang, J., J. Ma, P. Wang, and H. Fu. 2016b. “A new method to improve the effectiveness of vacuum preloading on the consolidation of dredged fill in Wenzhou.” Jpn. Geotech. Soc. Spec. Publ. 2 (51): 1794–1797.
Wang, J., W. Shi, W. Wu, F. Liu, H. Fu, Y. Cai, and X. Zhu. 2018a. “Influence of composite flocculant FeCl3-APAM on vacuum drainage of river-dredged sludge.” Can. Geotech. J. 2018: 1–8.
Wang, J., R. Zhao, Y. Cai, H. Fu, X. Li, and X. Hu. 2018b. “Vacuum preloading and electro-osmosis consolidation of dredged slurry pre-treated with flocculants.” Eng. Geol. 246: 123–130. https://doi.org/10.1016/j.enggeo.2018.09.024.
Wareham, D. G., and J. R. Mackechnie. 2006. “Solidification of new zealand harbor sediments using cementitious materials.” J. Mater. Civ. Eng. 18 (2): 311–315. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(311).
Wu, H. N., S. L. Shen, L. Ma, Z. Y. Yin, and S. Horpibulsuk. 2015. “Evaluation of the strength increase of marine clay under staged embankment loading: A case study.” Mar. Georesour. Geotechnol. 33 (6): 532–541. https://doi.org/10.1080/1064119X.2014.954180.
Wu, Y., G. Kong, Y. Lu, and D. A. Sun. 2017. “Experimental study on vacuum preloading with flocculation for solid-liquid separation in waste slurry.” Geomech. Eng. 13 (2): 319–331. https://doi.org/10.12989/gae.2017.13.2.319.
Zhang, N., S. L. Shen, and H. N. Wu. 2015. “Evaluation of effect of basal reinforcement under embankments loading on soft marine deposits.” Geotext. Geomembr. 43 (6): 506–514. https://doi.org/10.1016/j.geotexmem.2015.05.005.
Zhang, Y. P., and X. D. Shen. 2012. “Experimental study of the impact of PAM on cement soil strength.” Appl. Mech. Mater. 174: 249–252.
Zheng, G., J. Liu, H. Lei, M. S. Rahman, and Z. Tan. 2017. “Improvement of very soft ground by a high-efficiency vacuum preloading method: A case study.” Mar. Georesour. Geotechnol. 35 (5): 631–642. https://doi.org/10.1080/1064119X.2016.1215363.
Zhuang, Y., and X. Y. Cui. 2016. “Evaluation of vacuum preloading with vertical drains as a soft soil improvement measure.” Soil. Mech. Found. Eng. 53 (3): 210–217. https://doi.org/10.1007/s11204-016-9387-3.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 9September 2019

History

Received: Jul 26, 2018
Accepted: Apr 10, 2019
Published online: Jun 21, 2019
Published in print: Sep 1, 2019
Discussion open until: Nov 21, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Key Laboratory of Coast Civil Structure Safety of Education Ministry, Dept. of Civil Engineering, Tianjin Univ., No. 135, Yaguan Rd., Jinnan District, Tianjin 300350, China; State Key Laboratory of Disaster Reduction in Civil Engineering, College of Civil Engineering, Tongji Univ., Shanghai 200092, China (corresponding author). ORCID: https://orcid.org/0000-0002-5961-1274. Email: [email protected]
Yinggang Xu [email protected]
Ph.D. Student, Dept. of Civil Engineering, Tianjin Univ., Tianjin 300350, China. Email: [email protected]
Master Student, Dept. of Civil Engineering, Tianjin Univ., Tianjin 300350, China. Email: [email protected]
Mingjing Jiang [email protected]
Professor, Dept. of Civil Engineering, Tianjin Univ., Tianjin 300350, China. Email: [email protected]
Liangzhi Liu [email protected]
Senior Engineer, Geotechnique Engineering Institute, Tianjin Univ., Tianjin 300350, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share