Technical Papers
Jul 20, 2018

Solidification of Subgrade Materials Using Magnesium Alkalinization: A Sustainable Additive for Construction

Publication: Journal of Materials in Civil Engineering
Volume 30, Issue 10

Abstract

The stabilization of problematic soils with chemical additives has become a popular practice globally. However, the mechanical and microstructural characterization of subgrade materials stabilized by alkalinization of raw silty sand, a common soil in British Columbia, Canada, has not yet been studied. This study introduces the novel concept of using an alkaline activator, along with magnesium chloride (MgCl2), to activate the silica and alumina components of silty sand. Compaction and unconfined compressive strength (UCS) tests were used to assess the mechanical properties of the stabilized soil. The mechanisms that have contributed to the stabilization process are discussed based on the results of microstructural analysis using field-emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) analysis. It was found that the chemical additive improved the compressive strength of the soil significantly. The UCS results revealed that a sample mixture containing an alkaline activator (sodium silicate/sodium hydroxide) ratio of 0.5, an alkaline activator to MgCl2 (L/S) ratio of 0.7, and 3% MgCl2 by dry weight of the soil was the optimum mix to improve the strength of the silty sand when cured for 28 days. The FTIR result confirmed the formation of the magnesium hydration products. Additionally, the SEM images and EDS data revealed that the stabilization process produced a cementitious gel, consisting of magnesium silicate hydrate (M-S-H) and magnesium aluminate hydrate (M-A-H) compounds, that bonded soil particles together.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The first author is grateful to the Ministry of Higher Education, Malaysia, for the Ph.D. scholarship. The first author also wishes to acknowledge Fred Liu and Mackenzie Grigg, undergraduate research students, for their support in preparing and testing the UCS samples. The corresponding author would like to acknowledge the funding support from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants Program (Grant No. 62R09724) and NSERC ENGAGE Grants Program (Grant No. 62R72677) for this research.

References

Abdullah, A., M. S. Jaafar, Y. H. Taufiq-Yap, A. Alhozaimy, A. Al-Negheimish, and J. Noorzaei. 2012. “The effect of various chemical activators on pozzolanic reactivity: A review.” Sci. Res. Essays 7 (7): 719–729. https://doi.org/10.5897/SRE10.858.
ASTM. 2007. Standard test methods for laboratory compaction characteristics of soil using standard effort. ASTM D698-12. West Conshohocken, PA: ASTM.
ASTM. 2008. Standard test method for unconfined compressive strength index of chemical-grouted soils. ASTM D4219-08. West Conshohocken, PA: ASTM.
ASTM. 2011. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM D2487-11. West Conshohocken, PA: ASTM.
Bagheri, A., A. Nazari, J. G. Sanjayan, and P. Rajeev. 2017. “Alkali activated materials vs geopolymers: Role of boron as an eco-friendly replacement.” Constr. Build. Mater. 146: 297–302. https://doi.org/10.1016/j.conbuildmat.2017.04.137.
BCMoTI (BC Ministry of Transportation and Infrastructure). 2015. B.C. on the Move: A 10-year transportation plan. Victoria, BC, Canada: BCMoTI.
Bernard, E., B. Lothenbach, D. Rentsch, I. Pochard, and A. Dauzères. 2017. “Formation of magnesium silicate hydrates (M-S-H).” Phys. Chem. Earth 99: 142–157. https://doi.org/10.1016/j.pce.2017.02.005.
Brew, D. R. M., and F. P. Glasser. 2005. “Synthesis and characterisation of magnesium silicate hydrate gels.” Cem. Concr. Res. 35 (1): 85–98. https://doi.org/10.1016/j.cemconres.2004.06.022.
Catauro, M., F. Bollino, A. Dell’Era, and S. V. Ciprioti. 2016. “Pure Al2O3·2SiO2 synthesized via a sol-gel technique as a raw material to replace metakaolin: Chemical and structural characterization and thermal behavior.” Ceram. Int. 42 (14): 16303–16309. https://doi.org/10.1016/j.ceramint.2016.07.179.
Cristelo, N., S. Glendinning, L. Fernandes, and A. T. Pinto. 2012. “Effect of calcium content on soil stabilisation with alkaline activation.” Constr. Build. Mater. 29: 167–174. https://doi.org/10.1016/j.conbuildmat.2011.10.049.
Cristelo, N., S. Glendinning, and A. Teixeira Pinto. 2011. “Deep soft soil improvement by alkaline activation.” Proc. ICE Ground Improv. 164 (2): 73–82. https://doi.org/10.1680/grim.900032.
Danks, A. E., S. R. Hall, and Z. Schnepp. 2016. “The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis.” Mater. Horiz. R. Soc. Chem. 3 (2): 91–112. https://doi.org/10.1039/C5MH00260E.
Davidovits, J. 2015. False values on CO2 emission for geopolymer cement/concrete published in scientific papers. Saint-Quentin, France: Geopolymer Institute Library.
De Silva, P., K. Sagoe-Crenstil, and V. Sirivivatnanon. 2007. “Kinetics of geopolymerization: Role of Al2O3 and SiO2.” Cem. Concr. Res. 37 (4): 512–518. https://doi.org/10.1016/j.cemconres.2007.01.003.
de Vargas, A. S., D. C. C. Dal Molin, A. C. F. Vilela, F. J. da Silva, B. Pavão, and H. Veit. 2011. “The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers.” Cem. Concr. Compos. 33 (6): 653–660. https://doi.org/10.1016/j.cemconcomp.2011.03.006.
Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. van Deventer. 2007. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
Environment Canada and Health Canada. 2001. Priority substances list assessment report: Road salts. 180. Ottawa, ON, Canada: Environment Canada and Health Canada.
Favier, A., G. Habert, J. B. d’Espinose de Lacaillerie, and N. Roussel. 2013. “Mechanical properties and compositional heterogeneities of fresh geopolymer pastes.” Cem. Concr. Res. 48, 9–16. https://doi.org/10.1016/j.cemconres.2013.02.001.
García-Lodeiro, I., N. Cherfa, F. Zibouche, A. Fernández-Jimenez, and A. Palomo. 2015. “The role of aluminium in alkali-activated bentonites.” Mater. Struct. 48 (3): 585–597. https://doi.org/10.1617/s11527-014-0447-8.
Hashemi, M. A., T. J. Massart, S. Salager, G. Herrier, and B. Francois. 2015. “Pore scale characterization of lime-treated sand-bentonite mixtures.” Appl. Clay Sci. 111: 50–60. https://doi.org/10.1016/j.clay.2015.04.001.
Hasmida, W., W. Hassan, A. S. A. Rashid, N. Latifi, S. Horpibulsuk, and S. Borhamdin. 2017. “Strength and morphological characteristics of organic soil stabilized with magnesium chloride.” Q. J. Eng. Geol. Hydrogeol. 50 (4): 454–459. https://doi.org/10.1144/qjegh2016-124.
Henrist, C., J. P. Mathieu, C. Vogels, A. Rulmont, and R. Cloots. 2003. “Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution.” J. Cryst. Growth 249 (1–2): 321–330. https://doi.org/10.1016/S0022-0248(02)02068-7.
Imbabi, M. S., C. Carrigan, and S. McKenna. 2012. “Trends and developments in green cement and concrete technology.” Int. J. Sustainable Built Environ. 1 (2): 194–216. https://doi.org/10.1016/j.ijsbe.2013.05.001.
Katz, L., A. Rauch, H. Liljestrand, J. Harmon, K. Shaw, and H. Albers. 2001. “Mechanisms of soil stabilization with liquid ionic stabilizer.” Transp. Res. Rec.: J. Transp. Res. Board 1757: 50–57. https://doi.org/10.3141/1757-06.
Khater, H. M. 2011. “Influence of metakaolin on resistivity of cement mortar to magnesium chloride solution.” J. Mater. Civ. Eng. 23 (9): 1295–1301.
Komnitsas, K., and D. Zaharaki. 2007. “Geopolymerisation: A review and prospects for the minerals industry.” Miner. Eng. 20 (14): 1261–1277. https://doi.org/10.1016/j.mineng.2007.07.011.
Latifi, N., A. Eisazadeh, A. Marto, and C. L. Meehan. 2017. “Tropical residual soil stabilization: A powder form material for increasing soil strength.” Constr. Build. Mater. 147: 827–836. https://doi.org/10.1016/j.conbuildmat.2017.04.115.
Latifi, N., S. Horpibulsuk, C. L. Meehan, M. Z. Abd Majid, M. M. Tahir, and E. T. Mohamad. 2016a. “Improvement of problematic soils with biopolymer—An environmentally friendly soil stabilizer.” J. Mater. Civ. Eng. 29 (2): 04016204. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001706.
Latifi, N., A. S. A. Rashid, N. Ecemis, M. M. Tahir, and A. Marto. 2016b. “Time-dependent physicochemical characteristics of Malaysian residual soil stabilized with magnesium chloride solution.” Arab. J. Geosci. 9 (1): 58. https://doi.org/10.1007/s12517-015-2100-4.
Latifi, N., A. S. A. Rashid, A. Marto, and M. M. Tahir. 2016c. “Effect of magnesium chloride solution on the physico-chemical characteristics of tropical peat.” Environ. Earth Sci. 75 (3): 220. https://doi.org/10.1007/s12665-015-4788-6.
Latifi, N., A. S. A. Rashid, S. Siddiqua, and S. Horpibulsuk. 2015. “Micro-structural analysis of strength development in low- and high swelling clays stabilized with magnesium chloride solution: A green soil stabilizer.” Appl. Clay Sci. 118: 195–206. https://doi.org/10.1016/j.clay.2015.10.001.
Li, B. Q., L. Mills, and S. McNeil. 2011. The implications of climate change on pavement performance and design. Newark, DE: University Transportation Center, Univ. of Delaware.
Lothenbach, B., D. Nied, E. L’Hôpital, G. Achiedo, and A. Dauzères. 2015. “Magnesium and calcium silicate hydrates.” Cement Concr. Res. 77: 60–68. https://doi.org/10.1016/j.cemconres.2015.06.007.
Madejová, J., and P. Komadel. 2001. “Baseline studies of the clay minerals society source clays: Infrared methods.” Clay Clay Miner. 49 (5): 410–432.
Muhammad, N., and S. Siddiqua. 2017. “Investigation of the strength development using magnesium alkalinization for subgrade.” In Proc., 6th Int. Conf. on Engineering Mechanics and Materials. Vancouver, BC, Canada: CSCE.
Patel, M. A., and H. S. Patel. 2012. “A review on effects of stabilizing agents for stabilization of weak soil.” Civ. Environ. Res. 2 (6): 1–7.
Phetchuay, C., S. Horpibulsuk, C. Suksiripattanapong, A. Chinkulkijniwat, A. Arulrajah, and M. M. Disfani. 2014. “Calcium carbide residue: Alkaline activator for clay-fly ash geopolymer.” Constr. Build. Mater. 69: 285–294. https://doi.org/10.1016/j.conbuildmat.2014.07.018.
Pourakbar, S., A. Asadi, B. B. Huat, N. Cristelo, and M. H. Fasihnikoutalab. 2016. “Application of alkali-activated agro-waste reinforced with wollastonite fibers in soil stabilization.” J. Mater. Civ. Eng. 29 (2): 04016206. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001735.
Provis, J. L. 2017. “Alkali-activated materials.” Cement Concr. Res., in press. https://doi.org/10.1016/j.cemconres.2017.02.009.
Randolph, R. B. 1997. “Earth materials catalyst stabilization for road bases, road shoulders, unpaved roads, and transportation earthworks.” Transp. Res. Rec. 1589: 58–63. https://doi.org/10.3141/1589-10.
Rauch, A. F., J. S. Harmon, L. E. Katz, and H. M. Liljestrand. 2002. “Measured effects of liquid soil stabilizers on engineering properties of clay.” Transp. Res. Rec. 1787: 33–41. https://doi.org/10.3141/1787-04.
Rios, S., N. Cristelo, A. V. da Fonseca, and C. Ferreira. 2016. “Structural performance of alkali-activated soil ash versus soil cement.” J. Mater. Civ. Eng. 28 (2): 04015125. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001398.
Saadeldin, R., and S. Siddiqua. 2013. “Geotechnical characterization of a clay-cement mix.” Bull. Eng. Geol. Environ. 72 (3–4): 601–608. https://doi.org/10.1007/s10064-013-0531-2.
Sanni, S. H., and R. B. Khadiranaikar. 2013. “Performance of alkaline solutions on grades of geopolymer concrete.” Int. J. Res. Eng. Technol. 2 (11): 366–371.
Sargent, P. 2015. “The development of alkali-activated mixtures for soil stabilisation.” In Handbook of alkali-activated cements, mortars and concretes, 555–604. Sawston, UK: Woodhead Publishing Limited.
Shi, C., and A. Fern. 2006. “Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements.” J. Hazard. Mater. 137 (3): 1656–1663. https://doi.org/10.1016/j.jhazmat.2006.05.008.
Singh, B., G. Ishwarya, M. Gupta, and S. K. Bhattacharyya. 2015. “Geopolymer concrete: A review of some recent developments.” Const. Build. Mater. 85: 78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036.
Sukmak, P., S. Horpibulsuk, and S.-L. Shen. 2013a. “Strength development in clay-fly ash geopolymer.” Constr. Build. Mater. 40: 566–574. https://doi.org/10.1016/j.conbuildmat.2012.11.015.
Sukmak, P., S. Horpibulsuk, S.-L. Shen, P. Chindaprasirt, and C. Suksiripattanapong. 2013b. “Factors influencing strength development in clay-fly ash geopolymer.” Constr. Build. Mater. 47: 1125–1136. https://doi.org/10.1016/j.conbuildmat.2013.05.104.
Tingle, J., and R. Santoni. 2003. “Stabilization of clay soils with nontraditional additives.” Transp. Res. Rec. 1819: 72–84. https://doi.org/10.3141/1819b-10.
Tonelli, M., F. Martini, L. Calucci, E. Fratini, M. Geppi, F. Ridi, S. Borsacchi, and P. Baglioni. 2016. “Structural characterization of magnesium silicate hydrate: Towards the design of eco-sustainable cements.” Dalton Trans. 45 (8): 3294–3304. https://doi.org/10.1039/C5DT03545G.
Torres-Carrasco, M., and F. Puertas. 2017. “La activación alcalina de diferentes aluminosilicatos como una alternativa al Cemento Portland: cementos activados alcalinamente o geopolímeros.” Revista Ingenieria de Construccion 32 (2): 5–12. https://doi.org/10.4067/S0718-50732017000200001.
Turkoz, M., H. Savas, A. Acaz, and H. Tosun. 2014. “The effect of magnesium chloride solution on the engineering properties of clay soil with expansive and dispersive characteristics.” Appl. Clay Sci. 101: 1–9. https://doi.org/10.1016/j.clay.2014.08.007.
Verdolotti, L., S. Iannace, M. Lavorgna, and R. Lamanna. 2008. “Geopolymerization reaction to consolidate incoherent pozzolanic soil.” J. Mater. Sci. 43 (3): 865–873. https://doi.org/10.1007/s10853-007-2201-x.
Wiebe, B. J. 1996. The effect of confining pressure, temperature, and suction on the shear strength and stiffness of unsaturated buffer. Winnipeg, Canada: Univ. of Manitoba.
William, R. J., B. A. Goodrich, and R. D. Koski. 2009. Environmental effects of magnesium chloride-based dust suppression products on roadside soils, vegetation and stream water chemistry. Fort Collins, CO: Colorado Agricultural Experiment Station, Colorado State Univ.
Xeidakis, G. S. 1996. “Stabilization of swelling clays by Mg(OH)2. Changes in clay properties after addition of Mg-hydroxide.” Eng. Geol. 44 (1–4): 107–120. https://doi.org/10.1016/S0013-7952(96)00047-6.
Xu, H., and J. S. J. van Deventer. 2000. “Geopolymerisation of alumino-silicate minerals.” Int. J. Miner. Process. 59 (3): 247–266. https://doi.org/10.1016/S0301-7516(99)00074-5.
Yousuf, M., A. Mollah, T. R. Hess, Y. N. Tsai, and D. L. Cocke. 1993. “An FTIR and XPS investigations of the effects of carbonation on the solidification/stabilization of cement based systems-Portland type V with zinc.” Cem. Concr. Res. 23 (4): 773–784. https://doi.org/10.1016/0008-8846(93)90031-4.
Yu, P., R. J. Kirkpatrick, B. Poe, P. F. McMillan, and X. Cong. 1999. “Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy.” J. Am. Ceram. Soc. 82 (3): 742–748. https://doi.org/10.1111/j.1151-2916.1999.tb01826.
Zhang, M., H. Guo, T. El-Korchi, G. Zhang, and M. Tao. 2013. “Experimental feasibility study of geopolymer as the next-generation soil stabilizer.” Constr. Build. Mater. 47: 1468–1478. https://doi.org/10.1016/j.conbuildmat.2013.06.017.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 30Issue 10October 2018

History

Received: Aug 24, 2017
Accepted: Apr 27, 2018
Published online: Jul 20, 2018
Published in print: Oct 1, 2018
Discussion open until: Dec 20, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Nurmunira Muhammad [email protected]
Graduate Student, School of Engineering, Univ. of British Columbia, Okanagan, 1137 Alumni Ave., Kelowna, BC, Canada V1V 1V7. Email: [email protected]
Associate Professor, School of Engineering, Univ. of British Columbia, Okanagan, 1137 Alumni Ave., Kelowna, BC, Canada V1V 1V7 (corresponding author). ORCID: https://orcid.org/0000-0002-3808-0670. Email: [email protected]
Nima Latifi, M.ASCE [email protected]
Postdoctoral Research Associate, Dept. of Civil and Environmental Engineering, Mississippi State Univ., Mississippi State, MS 39762. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share