Abstract

A simplified mathematical model for concrete carbonation has been developed and compared with data from accelerated and real exposures. A chamber for an accelerated carbonation test has been built, and the results derived from the test have been used to propose the simplified mathematical model. Two different concrete specimens, denoted S1 and S2, were exposed. For S1 concrete, the proposed mathematical model is a mass balance among CO2, Ca(OH)2, and C-S-H and takes into account the change of the porosity with time. Two different simulation software programs were employed to solve the set of differential equations. The model fits well experimental results reported in other works allowing prediction of service life in concrete structures. On the other hand, S2 concrete did not suffer carbonation. A comparative analysis of behavior of both specimens was made.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors are grateful to Departamento Administrativo de Ciencia, Tecnología e Innovación COLCIENCIAS and Universidad de Antioquia for financial assistance (projects 110242520643 and 463-2008). This work has been partially funded by “Patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación, Francisco José de Caldas y el Servicio Nacional de Aprendizaje SENA.”

References

Alonso, A., and Andrade, C. (1993). “Life time of rebars in carbonated concrete.” Progress in understanding and prevention, J. M. Costa and A. D. Mercer, eds., Institute of Materials, London, 634–641.
ASTM. (2007). “Standard practice for making and curing concrete test specimens in the laboratory.” ASTM C192/C192M-07, West Conshohocken, PA.
ASTM. (2013). “Standard specification for concrete aggregates.” ASTM C33/C33M-13, West Conshohocken, PA.
Burkan, O., and Razaqpur, A. G. (2004). “Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures.” Cem. Concr. Compos., 26(1), 57–73.
Castellote, M., and Andrade, C. (2008). “Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE.” Cem. Concr. Res., 38(12), 1374–1384.
Chang, C. F., and Chen, J. W. (2006). “The experimental investigation of concrete carbonation depth.” Cem. Concr. Res., 36(9), 1760–1767.
Chang, J. J., Yeih, W. C., Huang, R., and Chi, J. M. (2003). “Mechanical properties of carbonated concrete.” J. Chin. Inst. Eng., 26(4), 513–522.
Comsol Multiphysics version 3.5 [Computer software]. COMSOL Group, Stockholm, Sweden.
Correa, E., Penaranda, S., Castaño, J. G., and Echeverria, F. (2010). “Concrete deterioration in Colombian urban atmospheres.” Rev. Fac. Ing. Univ. Antioquia, 52, 41–46.
Helene, P., and Castro-Borges, P. (2009). “A novel method to predict concrete carbonation.” Concr. Cem. Investig. Desarro., 1(1), 25–35.
Khunthongkeaw, J., Tangtermsirikul, S., and Leelawat, T. (2006). “A study on carbonation depth prediction for fly ash concrete.” Constr. Build. Mater., 20(9), 744–753.
Liang, M. T., and Lin, S. M. (2003). “Modeling the transport of multiple corrosive chemicals in concrete structures: Synergetic effect study.” Cem. Concr. Res., 33(12), 1917–1924.
Linares, D., and Sánchez, M. (2003). “Construction, operation and performance of a chamber for tests of accelerated carbonation.” Rev. Téc. Ing. Univ. Zulia, 26(1), 34–44.
MATLAB [Computer software]. MathWorks, Natick, MA.
Meier, S. A., Peter, M. A., Muntean, A., and Bohm, M. (2005). Modelling and simulation of concrete carbonation with internal layers, Univ. of Bremen, Centre for Industrial Mathematics, Bremen, Germany.
Meier, S. A., Peter, M. A., Muntean, A., and Bohm, M. (2007). “Dynamics of the internal reaction layer arising during carbonation of concrete.” Chem. Eng. Sci., 62(4), 1125–1137.
Monteiro, I., Branco, F. A., de Brito, J., and Neves, R. (2012). “Statistical analysis of the carbonation coefficient in open air concrete structures.” Constr. Build. Mater., 29(1), 263–269.
Morandeau, A., Thiéry, M., and Dangla, P. (2014). “Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties.” Cem. Concr. Res., 56, 153–170.
Moreno, E., Domínguez, G., Cob, J., and Duarte, F. (2004). “Efecto de la relación agua/cemento en la velocidad de carbonatación del concreto utilizando una cámara de aceleración [Effect of water/cement ratio on the carbonation rate of concrete using an accelerated chamber].” Ingeniería, 8(2), 117–130 (in Spanish).
Ngala, V. T., and Page, C. L. (1997). “Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes.” Cem. Concr. Res., 27(7), 995–1007.
Papadakis, V. G., Vayenas, C. G., and Fardis, M. N. (1991). “Fundamental modeling and experimental investigation of concrete carbonation.” ACI Mater. J., 88(4), 363–373.
Park, D. C. (2008). “Carbonation of concrete in relation to CO2 permeability and degradation of coatings.” Constr. Build. Mater., 22(11), 2260–2268.
Peter, M. A., Muntean, A., Meier, S. A., and Bohm, M. (2008). “Competition of several carbonation reactions in concrete: A parametric study.” Cem. Concr. Res., 38(12), 1385–1393.
Polder, R., Andrade, C., Elsener, B., Vennesland, O., Gulikers, J., Weidert, R., and Raupach, M. (2000). “Test methods for on site measurement of resistivity of concrete.” Mater. Struct., 33(10), 603–611.
Saetta, A. V., and Vitaliani, R. V. (2004). “Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures. I: Theoretical formulation.” Cem. Concr. Res., 34(4), 571–579.
Saetta, A. V., and Vitaliani, R. V. (2005). “Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures. II: Practical applications.” Cem. Concr. Res., 35(5), 958–967.
Sanjuán, M. A., and del Olmo, C. (2001). “Carbonation resistance of one industrial mortar used as a concrete coating.” Build. Environ., 36(8), 949–953.
Sisomphon, K., and Franke, L. (2007). “Carbonation rates of concretes containing high volume of pozzolanic materials.” Cem. Concr. Res., 37(12), 1647–1653.
Song, H. W., Kwon, S. J., Byun, K. J., and Park, C. K. (2006). “Predicting carbonation in early-aged cracked concrete.” Cem. Concr. Res., 36(5), 979–989.
Steffens, A., Dinkler, D., and Ahrens, H. (2002). “Modeling carbonation for corrosion risk prediction of concrete structures.” Cem. Concr. Res., 32(6), 935–941.
Trocónis, O. (1998). Manual for inspecting, evaluating and diagnosing reinforced concrete structures, CYTED, Madrid, Spain.
Vera, R., Villaroel, M., Delgado, D., Carvajal, A. M., de Barbieri, F., and Troconis, O. (2009). “DURACON: Influencia de la acción del medio ambiente en la durabilidad del concreto [DURACON: Effect of environment on reinforced concrete durability].” Rev. Constr., 8(1), 13–23 (in Spanish).
Villain, G., Thiery, M., and Platret, G. (2007). “Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry.” Cem. Concr. Res., 37(8), 1182–1192.
Wang, X.-Y., and Lee, H.-S. (2009a). “A model for predicting the carbonation depth of concrete containing low-calcium fly ash.” Constr. Build. Mater., 23(2), 725–733.
Wang, X.-Y., and Lee, H.-S. (2009b). “A model predicting carbonation depth of concrete containing silica fume.” Mater. Struct., 42(6), 691–704.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 29Issue 10October 2017

History

Received: May 11, 2016
Accepted: Mar 8, 2017
Published online: Jun 8, 2017
Published in print: Oct 1, 2017
Discussion open until: Nov 8, 2017

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Researcher, Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia. E-mail: [email protected]
E. Correa, Ph.D. [email protected]
Researcher, Materiales para el Mobiliario—MATERMOB, Centro Tecnológico del Mobiliario, Servicio Nacional de Aprendizaje, Calle 63 No. 58B-03, Itaguí 055410, Colombia. E-mail: [email protected]
Senior Researcher, Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia (corresponding author). ORCID: https://orcid.org/0000-0002-7972-8293. E-mail: [email protected]
F. Echeverría, Ph.D. [email protected]
Senior Researcher, Centro de Investigación, Innovación y Desarrollo de Materiales—CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share